259 research outputs found

    VLTI/MIDI 10 micron interferometry of the forming massive star W33A

    Full text link
    We report on resolved interferometric observations with VLTI/MIDI of the massive young stellar object (MYSO) W33A. The MIDI observations deliver spectrally dispersed visibilities with values between 0.03 and 0.06, for a baseline of 45m over the wavelength range 8-13 micron. The visibilities indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron which increases to 240AU at 13 micron, scales previously unexplored among MYSOs. This observed trend is consistent with the temperature falling off with distance. 1D dust radiative transfer models are simultaneously fit to the visibility spectrum, the strong silicate feature and the shape of the mid infrared spectral energy distribution (SED). For any powerlaw density distribution, we find that the sizes (as implied by the visibilities) and the stellar luminosity are incompatible. A reduction to a third of W33A's previously adopted luminosity is required to match the visibilities; such a reduction is consistent with new high resolution 70 micron data from Spitzer's MIPSGAL survey. We obtain best fits for models with shallow dust density distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the silicate feature produced by decreasing the ISM ratio of graphite to silicates and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter

    Adaptive Optics Imaging of IRAS 18276-1431: a bipolar pre-planetary nebula with circumstellar "searchlight beams" and "arcs"

    Get PDF
    We present high-angular resolution images of the post-AGB nebula IRAS18276-1431 (also known as OH17.7-2.0) obtained with the Keck II Adaptive Optics (AO) system in its Natural Guide Star (NGS) mode in the Kp, Lp, and Ms near-infrared bands. We also present supporting optical F606W and F814W HST images as well as interferometric observations of the 12CO(J=1-0), 13CO(J=1-0), and 2.6mm continuum emission with OVRO. The envelope of IRAS18276-1431 displays a clear bipolar morphology in our optical and NIR images with two lobes separated by a dark waist and surrounded by a faint 4.5"x3.4" halo. Our Kp-band image reveals two pairs of radial ``searchlight beams'' emerging from the nebula center and several intersecting, arc-like features. From our CO data we derive a mass of M>0.38[D/3kpc]^2 Msun and an expansion velocity v_exp=17km/s for the molecular envelope. The density in the halo follows a radial power-law proportional to r^-3, which is consistent with a mass-loss rate increasing with time. Analysis of the NIR colors indicates the presence of a compact central source of ~300-500K dust illuminating the nebula in addition to the central star. Modeling of the thermal IR suggests a two-shell structure in the dust envelope: 1) an outer shell with inner and outer radius R_in~1.6E16cm and R_out>~1.25E17cm, dust temperature T_d~105-50K, and a mean mass-loss rate of Mdot~1E-3Msun/yr; and 2) an inner shell with R_in~6.3E14cm, T_dust~500-105K, and Mdot~3E-5Msun/yr. An additional population of big dust grains (radius a>~0.4mm) with T_dust=150-20K and mass M_dust=(0.16-1.6)E-3 [D/3kpc]^2 Msun can account for the observed sub-mm and mm flux excess. The mass of the envelope enclosed within R_out=1.25E17cm derived from SED modeling is ~1[D/3kpc]^2 Msun.Comment: 46 pages, 14 figures, 3 tables, accepted for publication in ApJ. Figures 12 & 13 in low resolution. Full resolution versions are available upon request to the first autho

    Electroweak Bubble Nucleation, Nonperturbatively

    Get PDF
    We present a lattice method to compute bubble nucleation rates at radiatively induced first order phase transitions, in high temperature, weakly coupled field theories, nonperturbatively. A generalization of Langer's approach, it makes no recourse to saddle point expansions and includes completely the dynamical prefactor. We test the technique by applying it to the electroweak phase transition in the minimal standard model, at an unphysically small Higgs mass which gives a reasonably strong phase transition (lambda/g^2 =0.036, which corresponds to m(Higgs)/m(W) = 0.54 at tree level but does not correspond to a positive physical Higgs mass when radiative effects of the top quark are included), and compare the results to older perturbative and other estimates. While two loop perturbation theory slightly under-estimates the strength of the transition measured by the latent heat, it over-estimates the amount of supercooling by a factor of 2.Comment: 48 pages, including 16 figures. Minor revisions and typo fixes, nothing substantial, conclusions essentially unchange

    Diffraction-limited ultrabroadband terahertz spectroscopy

    Get PDF
    Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 103. The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields

    Eco-bio-social determinants for house infestation by non-domiciliated Triatoma dimidiata in the Yucatan peninsula, Mexico

    Get PDF
    Background Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. Methodology/principal findings We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. Conclusions/significance These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control

    Baryogenesis from Primordial Blackholes after Electroweak Phase Transition

    Get PDF
    Incorporating a realistic model for accretion of ultra-relativistic particles by primordial blackholes (PBHs), we study the evolution of an Einstein-de Sitter universe consisting of PBHs embedded in a thermal bath from the epoch 1033\sim 10^{-33} sec to 5×109\sim 5\times 10^{-9} sec. In this paper we use Barrow et al's ansatz to model blackhole evaporation in which the modified Hawking temperature goes to zero in the limit of the blackhole attaining a relic state with mass mpl\sim m_{pl}. Both single mass PBH case as well as the case in which blackhole masses are distributed in the range 8×1023×1058\times 10^2 - 3\times 10^5 gm have been considered in our analysis. Blackholes with mass larger than 105\sim 10^5 gm appear to survive beyond the electroweak phase transition and, therefore, successfully manage to create baryon excess via XXˉX-\bar X emissions, averting the baryon number wash-out due to sphalerons. In this scenario, we find that the contribution to the baryon-to-entropy ratio by PBHs of initial mass mm is given by ϵζ(m/1gm)1\sim \epsilon \zeta (m/1 {gm})^{-1}, where ϵ\epsilon and ζ\zeta are the CP-violating parameter and the initial mass fraction of the PBHs, respectively. For ϵ\epsilon larger than 104\sim 10^{-4}, the observed matter-antimatter asymmetry in the universe can be attributed to the evaporation of PBHs.Comment: Latex2e file with seven figures included as postscript file

    Testing the Efficacy of a Multi-Component DNA-Prime/DNA-Boost Vaccine against Trypanosoma cruzi Infection in Dogs

    Get PDF
    Immunization of dogs with DNA-prime/DNA-boost vaccine (TcVac1) enhanced the Trypanosoma cruzi-specific type 1 antibody and CD8+ T cell responses that resulted in an early control of acute parasitemia and a moderate decline in pathological symptoms during chronic phase. Further improvement of vaccine-induced immunity would be required to achieve clinical and epidemiological benefits and prevent transmission of parasites from vaccinated/infected dogs to triatomines

    Binary IS Typing for Staphylococcus aureus

    Get PDF
    Background: We present an easily applicable test for rapid binary typing of Staphylococcus aureus: binary interspace (IS) typing. This test is a further development of a previously described molecular typing technique that is based on length polymorphisms of the 16S-23S rDNA interspace region of S. aureus. Methodology/Principal Findings: A novel approach of IS-typing was performed in which binary profiles are created. 424 human and animal derived MRSA and MSSA isolates were tested and a subset of these isolates was compared with multi locus sequence typing (MLST) and Amplified Fragment Length Polymorphism (AFLP). Binary IS typing had a high discriminatory potential and a good correlation with MLST and AFLP. Conclusions/Significance: Binary IS typing is easy to perform and binary profiles can be generated in a standardized fashion. These two features, combined with the high correlation with MLST clonal complexes, make the techniqu

    Measuring the Broken Phase Sphaleron Rate Nonperturbatively

    Get PDF
    We present details for a method to compute the broken phase sphaleron rate (rate of hot baryon number violation below the electroweak phase transition) nonperturbatively, using a combination of multicanonical and real time lattice techniques. The calculation includes the ``dynamical prefactor,'' which accounts for prompt recrossings of the sphaleron barrier. The prefactor depends on the hard thermal loops, getting smaller with increasing Debye mass; but for realistic Debye masses the effect is not large. The baryon number erasure rate in the broken phase is slower than a perturbative estimate by about exp(-3.6). Assuming the electroweak phase transition has enough latent heat to reheat the universe to the equilibrium temperature, baryon number is preserved after the phase transition if the ratio of (``dimensionally reduced'' thermal) scalar to gauge couplings (lambda / g^2) is less than .037.Comment: 41 pages, 13 figures included with psfig. Some wordings clarified, nothing substantial change
    corecore