102 research outputs found

    Time-dependent conduction current in lithium niobate crystals with charged domain walls

    Full text link
    We present the experimental study of the increase and decrease of the abnormal conduction current appeared during polarization reversal at elevated temperatures (120-250 °C) in stoichiometric and MgO doped lithium niobate single crystals. It is shown that the conduction current is caused by existence of the through charged domain walls. The time dependence of the conduction current has been measured in low electric field immediately after partial switching. The maximal value of the conduction current in crystal with through charged domain walls is of 4-5 orders of magnitude higher than in initial single domain state. The activation energy is 1.1 eV. © 2013 AIP Publishing LLC

    "Head-to-head" and "tail-to-tail" 180-degree domain walls in an isolated ferroelectric

    Full text link
    "Head-to-head" and "tail-to-tail" 180-degree domain-walls in a finite isolated ferroelectric sample are theoretically studied using Landau theory. The full set of equations, suitable for numerical calculations is developed. The explicit expressions for the polarization profile across the walls are derived for several limiting cases and wall-widths are estimated. It is shown analytically that different regimes of screening and different dependences for width of charged domain walls on the temperature and parameters of the system are possible, depending on spontaneous polarization and concentration of carriers in the material. It is shown that the half-width of charged domain walls in typical perovskites is about the nonlinear Thomas-Fermi screening-length and about one order of magnitude larger than the half-width of neutral domain-walls. The formation energies of "head-to-head" walls under different regimes of screening are obtained, neglecting the poling ability of the surface. It is shown that either "head-to-head" or "tail-to-tail" configuration can be energetically favorable in comparison with the monodomain state of the ferroelectric if the poling ability of the surface is large enough. If this is not the case, the existence of charged domain walls in bulk ferroelectrics is merely a result of the domain-growth kinetics. Size-effect corresponding to the competition between state with charged domain wall, single domain state, multidomain state, and the state with the zero polarization is considered. The results obtained for the case of an isolated ferroelectric sample were compared with the results for an electroded sample. It was shown that charged domain wall in electroded sample can be either metastable or stable, depends on the work function difference between electrodes and ferroelectric and the poling ability of the electrode/ferroelectric interface.Comment: 47 pages, 10 figure

    Conductivity of twin walls - surface junctions in ferroelastics: interplay of deformation potential, octahedral rotations, improper ferroelectricity and flexoelectric coupling

    Get PDF
    Electronic and structural phenomena at the twin domain wall-surface junctions in the ferroelastic materials are analyzed. Carriers accumulation caused by the strain-induced band structure changes originated via the deformation potential mechanism, structural order parameter gradient, rotostriction and flexoelectric coupling is explored. Approximate analytical results show that inhomogeneous elastic strains, which exist in the vicinity of the twin walls - surface junctions due to the rotostriction coupling, decrease the local band gap via the deformation potential and flexoelectric coupling mechanisms. This is the direct mechanism of the twin walls static conductivity in ferroelastics and, by extension, in multiferroics and ferroelectrics. On the other hand, flexoelectric and rotostriction coupling leads to the appearance of the improper polarization and electric fields proportional to the structural order parameter gradient in the vicinity of the twin walls - surface junctions. The "flexo-roto" fields leading to the carrier accumulation are considered as indirect mechanism of the twin walls conductivity. Comparison of the direct and indirect mechanisms illustrates complex range of phenomena directly responsible for domain walls static conductivity in materials with multiple order parameters.Comment: 35 pages, 11 figures, 3 table, 3 appendices Improved set of rotostriction coefficients are used in calculation

    Domain wall conduction in multiaxial ferroelectrics

    Full text link
    The conductance of domain wall structures consisting of either stripes or cylindrical domains in multi-axial ferroelectric-semiconductors is analyzed. The effects of the domain size, wall tilt and curvature, on charge accumulation, are analyzed using the Landau-Ginsburg Devonshire (LGD) theory for polarization combined with Poisson equation for charge distributions. Both the classical ferroelectric parameters including expansion coefficients in 2-4-6 Landau potential and gradient terms, as well as flexoelectric coupling, inhomogeneous elastic strains and electrostriction are included in the present analysis. Spatial distributions of the ionized donors, free electrons and holes were found self-consistently using the effective mass approximation for the respective densities of states. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and thicker cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radius less then 5-10 correlation length appeared conducting across entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.Comment: 39 pages, 11 figures, 3 tables, 4 appendice

    Early and accurate detection of cholangiocarcinoma in patients with primary sclerosing cholangitis by methylation markers in bile

    Get PDF
    Background and Aims Primary sclerosing cholangitis (PSC) is associated with increased risk of cholangiocarcinoma (CCA). Early and accurate CCA detection represents an unmet clinical need as the majority of patients with PSC are diagnosed at an advanced stage of malignancy. In the present study, we aimed at establishing robust DNA methylation biomarkers in bile for early and accurate diagnosis of CCA in PSC. Approach and Results Droplet digital PCR (ddPCR) was used to analyze 344 bile samples from 273 patients with sporadic and PSC-associated CCA, PSC, and other nonmalignant liver diseases for promoter methylation of cysteine dioxygenase type 1, cannabinoid receptor interacting protein 1, septin 9, and vimentin. Receiver operating characteristic (ROC) curve analyses revealed high AUCs for all four markers (0.77-0.87) for CCA detection among patients with PSC. Including only samples from patients with PSC diagnosed with CCA 36 months) as controls, and remained high (83%) when only including patients with PSC and dysplasia as controls (n = 23). Importantly, the bile samples from the CCA-PSCPeer reviewe

    Modeling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    Full text link
    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. Exactly we have modified Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic one and the various hysteresis loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films.Comment: 21 pages, 10 figures, sent to Journal of Physics: Condensed Matte

    Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker.

    Get PDF
    Background -Preeclampsia (PE) is a complex and common human-specific pregnancy syndrome associated with placental pathology. The human-specificity provides both intellectual and methodological challenges, lacking a robust model system. Given the role of imprinted genes in human placentation and the vulnerability of imprinted genes to loss of imprinting changes, there has been extensive speculation, but no robust evidence, that imprinted genes are involved in PE. Our study aims at investigating whether disturbed imprinting contributes to PE. Methods -We first aimed at confirming that PE is a disease of the placenta by generating and analysing genome-wide molecular data on well-characterized patient material. We performed high-throughput transcriptome analyses of multiple placenta samples from normal and PE patients. Next, we identified differentially expressed genes (DEGs) in PE placenta, and intersected them with the list of human imprinted genes. We employed bioinformatics/statistical analyses to confirm association between imprinting and PE, and to predict biological processes affected in PE. Validation included epigenetic and cellular assays. Regarding human-specificity, we established an in vitro invasion-differentiation trophoblast model. Our comparative phylogenetic analysis involved single-cell transcriptome data of human, macaque and mouse preimplantation embryogenesis. Results -We found disturbed placental imprinting in PE and revealed potential candidates, including GATA3 and DLX5, with poorly explored imprinted status and no prior association with PE. Due to loss of imprinting DLX5 was upregulated in 69% of PE placentas. Levels of DLX5 correlated with classical PE marker. DLX5 is expressed in human, but not in murine trophoblast. The DLX5(high) phenotype resulted in reduced proliferation, increased metabolism and ER stress-response activation in trophoblasts in vitro The transcriptional profile of such cells mimics the transcriptome of PE placentas. Pan-mammalian comparative analysis identified DLX5 as a part of the human-specific regulatory network of trophoblast differentiation. Conclusions -Our analysis provides evidence of a true association between disturbed imprinting, gene expression and PE. Due to disturbed imprinting, the upregulated DLX5 affects trophoblast proliferation. Our in vitro model might fill a vital niche in PE research. Human-specific regulatory circuitry of DLX5 might help to explain certain aspects of PE

    Association between gestational levels of toxic metals and essential elements and cerebral palsy in children

    Get PDF
    IntroductionCerebral palsy (CP) is the most common motor disability in childhood, but its causes are only partly known. Early-life exposure to toxic metals and inadequate or excess amounts of essential elements can adversely affect brain and nervous system development. However, little is still known about these as perinatal risk factors for CP. This study aims to investigate the associations between second trimester maternal blood levels of toxic metals, essential elements, and mixtures thereof, with CP diagnoses in children.MethodsIn a large, population-based prospective birth cohort (The Norwegian Mother, Father, and Child Cohort Study), children with CP diagnoses were identified through The Norwegian Patient Registry and Cerebral Palsy Registry of Norway. One hundred forty-four children with CP and 1,082 controls were included. The relationship between maternal blood concentrations of five toxic metals and six essential elements and CP diagnoses were investigated using mixture approaches: elastic net with stability selection to identify important metals/elements in the mixture in relation to CP; then logistic regressions of the selected metals/elements to estimate odds ratio (OR) of CP and two-way interactions among metals/elements and with child sex and maternal education. Finally, the joint effects of the mixtures on CP diagnoses were estimated using quantile-based g-computation analyses.ResultsThe essential elements manganese and copper, as well as the toxic metal Hg, were the most important in relation to CP. Elevated maternal levels of copper (OR = 1.40) and manganese (OR = 1.20) were associated with increased risk of CP, while Hg levels were, counterintuitively, inversely related to CP. Metal/element interactions that were associated with CP were observed, and that sex and maternal education influenced the relationships between metals/elements and CP. In the joint mixture approach no significant association between the mixture of metals/elements and CP (OR = 1.00, 95% CI = [0.67, 1.50]) was identified.ConclusionUsing mixture approaches, elevated levels of copper and manganese measured in maternal blood during the second trimester could be related to increased risk of CP in children. The inverse associations between maternal Hg and CP could reflect Hg as a marker of maternal fish intake and thus nutrients beneficial for foetal brain development

    Association between gestational levels of toxic metals and essential elements and cerebral palsy in children

    Get PDF
    Introduction Cerebral palsy (CP) is the most common motor disability in childhood, but its causes are only partly known. Early-life exposure to toxic metals and inadequate or excess amounts of essential elements can adversely affect brain and nervous system development. However, little is still known about these as perinatal risk factors for CP. This study aims to investigate the associations between second trimester maternal blood levels of toxic metals, essential elements, and mixtures thereof, with CP diagnoses in children. Methods In a large, population-based prospective birth cohort (The Norwegian Mother, Father, and Child Cohort Study), children with CP diagnoses were identified through The Norwegian Patient Registry and Cerebral Palsy Registry of Norway. One hundred forty-four children with CP and 1,082 controls were included. The relationship between maternal blood concentrations of five toxic metals and six essential elements and CP diagnoses were investigated using mixture approaches: elastic net with stability selection to identify important metals/elements in the mixture in relation to CP; then logistic regressions of the selected metals/elements to estimate odds ratio (OR) of CP and two-way interactions among metals/elements and with child sex and maternal education. Finally, the joint effects of the mixtures on CP diagnoses were estimated using quantile-based g-computation analyses. Results The essential elements manganese and copper, as well as the toxic metal Hg, were the most important in relation to CP. Elevated maternal levels of copper (OR = 1.40) and manganese (OR = 1.20) were associated with increased risk of CP, while Hg levels were, counterintuitively, inversely related to CP. Metal/element interactions that were associated with CP were observed, and that sex and maternal education influenced the relationships between metals/elements and CP. In the joint mixture approach no significant association between the mixture of metals/elements and CP (OR = 1.00, 95% CI = [0.67, 1.50]) was identified. Conclusion Using mixture approaches, elevated levels of copper and manganese measured in maternal blood during the second trimester could be related to increased risk of CP in children. The inverse associations between maternal Hg and CP could reflect Hg as a marker of maternal fish intake and thus nutrients beneficial for foetal brain development
    corecore