154 research outputs found

    A novel cyclosporin a aqueous formulation for dry eye treatment: in vitro and in vivo evaluation.

    Get PDF
    PURPOSE: The aim of the present study was the in vitro and in vivo evaluation of a novel aqueous formulation based on polymeric micelles for the topical delivery of cyclosporine A for dry eye treatment. METHODS: In vitro experiments were carried out on primary rabbit corneal cells, which were characterized by immunocytochemistry using fluorescein-labeled lectin I/isolectin B4 for the endothelial cells and mouse monoclonal antibody to cytokeratin 3+12 for the epithelial ones. Living cells were incubated for 1 hour or 24 hours with a fluorescently labeled micelle formulation and analyzed by fluorescence microscopy. In vivo evaluations were done by Schirmer test, osmolarity measurement, CyA kinetics in tears, and CyA ocular distribution after topical instillation. A 0.05% CyA micelle formulation was compared to a marketed emulsion (Restasis). RESULTS: The in vitro experiments showed the internalization of micelles in the living cells. The Schirmer test and osmolarity measurements demonstrated that micelles did not alter the ocular surface properties. The evaluation of the tear fluid gave similar CyA kinetics values: AUC = 2339 ± 1032 min*μg/mL and 2321 ± 881.63; Cmax = 478 ± 111 μg/mL and 451 ± 74; half-life = 36 ± 9 min and 28 ± 9 for the micelle formulation and Restasis, respectively. The ocular distribution investigation revealed that the novel formulation delivered 1540 ± 400 ng CyA/g tissue to the cornea. CONCLUSIONS: The micelle formulation delivered active CyA into the cornea without evident negative influence on the ocular surface properties. This formulation could be applied for immune-related ocular surface diseases

    Evaluation of sesamum gum as an excipient in matrix tablets

    Get PDF
    In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated

    NIR analysis of cellulose and lactose - Application to ecstasy tablet analysis.

    No full text
    Cellulose and lactose are the most frequently used excipients in illicit ecstasy production. The aim of this project was to use near infrared reflectance spectroscopy (NIRS) for the determination of the different chemical forms of these two substances, as well as for the differentiation of their origin (producer). It was possible to distinguish between the different chemical forms of both compounds, as well as between their origins (producers), although within limits. Furthermore, the possibilities to apply NIR for the analysis of substances such as found in illicit tablets were studied. First, a few cellulose and lactose samples were chosen to make mixtures with amphetamine at three degrees of purity (5, 10 and 15%), in order to study the resulting changes in the spectra as well as to simultaneously quantify amphetamine and identify the excipient. A PLS2 model could be build to predict concentrations and excipient. Secondarily, the technique was to be applied to real ecstasy tablets. About 40 ecstasy seizures were analysed with the aim to determine the excipient and to check them against each other. Identification of the excipients was not always obvious, especially when more than one excipient were present. However, a comparison between tablets appeared to give groups of similar samples. NIR analysis results in spectra representing the tablet blend as a whole taking into account all absorbing compounds. Although NIRS seems to be an appropriate method for ecstasy profiling, little is known about intra- and intervariability of compression batches

    Bioerodible Polymers for Ocular Drug Delivery

    No full text
    Development of ophthalmic drug-delivery systems has always been challenging. The commonly used route for drug delivery to the anterior segment of the eye has been the conjunctival cul-de-sac. Because of drawbacks associated with this route, new approaches have been investigated for delivery of drugs to the eye by means of polymeric delivery systems. Development of controlled drug-release devices has been a major step forward in this respect. Bioerodible polymers have been at the forefront of such systems. They are very important because they eliminate the need for removing the implant after complete drug release. Bioerodible polymers have been divided into three classes based on their mechanism of hydrolysis: Type I-hydrolysis of crosslinked hydrogels; Type II-solubilization by ionization or hydrolysis of linear polymers; and Type III-biodegradation by backbone cleavage. Polymers from all three classes are discussed in detail in this review

    Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye.

    Get PDF
    PURPOSE: Drug delivery to treat diseases of the posterior segment of the eye, such as choroidal neovascularization and its complications, is hampered by poor intraocular penetration and rapid elimination of the drug from the eye. The purpose of this study was to investigate the feasibility and tolerance of suprachoroidal injections of poly(ortho ester) (POE), a bioerodible and biocompatible polymer, as a biomaterial potentially useful for development of sustained drug delivery systems. METHODS: After tunnelization of the sclera, different formulations based on POE were injected (100 microL) into the suprachoroidal space of pigmented rabbits and compared with 1% sodium hyaluronate. Follow-up consisted of fundus observations, echography, fluorescein angiography, and histologic analysis over 3 weeks. RESULTS: After injection, POE spread in the suprachoroidal space at the posterior pole. It was well tolerated and progressively disappeared from the site of injection without sequelae. No bleeding or retinal detachment occurred. Echographic pictures showed that the material was present in the suprachoroidal space for 3 weeks. Angiography revealed minor pigment irregularities at the site of injection, but no retinal edema or necrosis. Histology showed that POE was well tolerated in the choroid. CONCLUSIONS: POE suprachoroidal injections, an easy, controllable, and reproducible procedure, were well tolerated in the rabbit eye. POE appears to be a promising biomaterial to deliver drugs focally to the choroid and the retina

    Biodegradable nanoparticles for direct or two-step tumor immunotargeting

    No full text
    In this study, selective cancer cell targeting of biodegradable poly(lactic acid) (PLA) nanoparticles (NPs) has been investigated in vitro. SKOV-3 (HER2 positive) ovarian cancer and Daudi (CD20 positive) lymphoma cell targeting was mediated by anti-HER2 (trastuzumab, Herceptin) and anti-CD20 (rituximab, Mabthera) monoclonal antibodies (mAbs), respectively. The mAb against nonexpressed antigen serving on each cell as isotype matched irrelevant control. Two different targeting approaches have been studied, a direct method using antibody-labeled NPs (mAb-NPs) and a pretargeting method using the avidin-biotin technology. For the direct protocol, fluorescent PLA-NPs were prepared including 10% 1-pyrenebutanol (PB)-labeled PLA in the NP-preparation (PB-NP). Thiol groups were covalently bound to the PB-NP, and the resulting thiolated PB-NP were coupled with the two mAbs using a bifunctional cross-linker. The effective targeting of cells by mAb-PB-NP was shown by flow cytometry analysis. Clearly anti-HER2-PB-NP specifically bound to the SKOV-3 cells and not to the Daudi cells, while anti-CD20-PB-NPs bound to Daudi cells but not to SKOV-3 cells. Specific mAb-PB-NP binding to tumor cells produced a mean 10-fold or higher signal increase compared to irrelevant IgG-PB-NPs. For the pretargeting protocol, plain PLA-NPs were also thiolated and NeutrAvidin-Rhodamine Red-X (NAR) coupled to the functionalized PLA-NPs with sulfo-MBS. The two-step method was evaluated in vitro by incubating SKOV-3 cells first with biotinylated mAbs followed by NAR-NPs. The relative fluorescence associated to the specific binding of NPs produced a 6-fold increase in flow cytometry signal compared to nonspecific binding. In conclusion, these experiments have shown that NPs covalently coupled with antibodies or NAR can specifically and efficiently bind to cancer cells in both a pretargeting and a direct approach, suggesting that functionalized NPs may be a useful drug carrier for tumor targeting

    Surface modification of poly(lactic acid) nanoparticles by covalent attachment of thiol groups by means of three methods

    No full text
    The aim of the present work was to find a suitable method for the introduction of thiol functions on the surface of poly(DL-lactic acid) (PLA) nanoparticles. Three different approaches were investigated. The modification of the surface involves the activation of PLA carboxylic acid groups followed by the attack of a nucleophile such as cysteine (method #1) or cystamine (method #2 and #3) that provide thiol functions via an amide bond. For the conjugation with cystamine, a second reaction step is required to expose the sulfhydryl function of cystamine that is otherwise protected in a disulfide bond. 1,4-Dithio-DL-threitol (DTT) (method #2) or Tris(2-carboxyethyl)-phosphine hydrochloride (method #3) were evaluated for their ability to reduce this linkage. Method #1 allowed a maximum of 8.5+/-2.8 mmol of thiol functions per mol of PLA to be attached on the surface of the nanoparticles. Method #2 allowed the introduction of a greater number of thiol functions (up to 190+/-15 mmol per mol of PLA). However, this latter method has a major drawback: DTT interacts strongly with the nanoparticle matrix during the reduction step. Method #3 has the advantage over method #2 in that it allowed a significant number of thiol functions to be covalently bound to the particles (up to 107.6+/-0.6 mmol per mol of PLA) without the problem of undesired interaction between DTT and the nanoparticle matrix. The introduction of thiol groups onto the surface of PLA nanoparticles is possible with all three suggested methods. The method #3 provides a straight forward approach for the substitution of carboxylic acid groups with a high number of activated sulfhydryl at the surface of PLA nanoparticles
    corecore