1,799 research outputs found

    Evapotranspiration and remote sensing

    Get PDF
    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration

    The transition zone as a host for recycled volatiles: Evidence from nitrogen and carbon isotopes in ultra-deep diamonds from Monastery and Jagersfontein (South Africa)

    Get PDF
    Sublithospheric (ultra-deep) diamonds provide a unique window into the deepest parts of Earth's mantle, which otherwise remain inaccessible. Here, we report the first combined C- and N-isotopic data for diamonds from the Monastery and Jagersfontein kimberlites that sample the deep asthenosphere and transition zone beneath the Kaapvaal Craton, in the mid Cretaceous, to investigate the nature of mantle fluids at these depths and the constraints they provide on the deep volatile cycle. Both diamond suites exhibit very light δ13C values (down to − 26‰) and heavy δ15N (up to + 10.3‰), with nitrogen abundances generally below 70 at. ppm but varying up to very high concentrations (2520 at. ppm) in rare cases. Combined, these signatures are consistent with derivation from subducted crustal materials. Both suites exhibit variable nitrogen aggregation states from 25 to 100% B defects. Internal growth structures, revealed in cathodoluminescence (CL) images, vary from faintly layered, through distinct cores to concentric growth patterns with intermittent evidence for dissolution and regular octahedral growth layers in places. Modelling the internal co-variations in δ13C-δ15N-N revealed that diamonds grew from diverse C-H-O-N fluids involving both oxidised and reduced carbon species. The diversity of the modelled diamond-forming fluids highlights the complexity of the volatile sources and the likely heterogeneity of the deep asthenosphere and transition zone. We propose that the Monastery and Jagersfontein diamonds form in subducted slabs, where carbon is converted into either oxidised or reduced species during fluid-aided dissolution of subducted carbon before being re-precipitated as diamond. The common occurrence of recycled C and N isotopic signatures in super-deep diamonds world-wide indicates that a significant amount of carbon and nitrogen is recycled back to the deep asthenosphere and transition zone via subducting slabs, and that the transition zone may be dominated by recycled C and N

    A review of non-fullerene polymer solar cells: from device physics to morphology control

    Get PDF
    The rise in power conversion efficiency of organic photovoltaic (OPV) devices over the last few years has been driven by the emergence of new organic semiconductors and the growing understanding of morphological control at both the molecular and aggregation scales. Non-fullerene OPVs adopting p-type conjugated polymers as the donor and n-type small molecules as the acceptor have exhibited steady progress, outperforming PCBM-based solar cells and reaching efficiencies of over 15% in 2019. This review starts with a refreshed discussion of charge separation, recombination, and V OC loss in non-fullerene OPVs, followed by a review of work undertaken to develop favorable molecular configurations required for high device performance. We summarize several key approaches that have been employed to tune the nanoscale morphology in non-fullerene photovoltaic blends, comparing them (where appropriate) to their PCBM-based counterparts. In particular, we discuss issues ranging from materials chemistry to solution processing and post-treatments, showing how this can lead to enhanced photovoltaic properties. Particular attention is given to the control of molecular configuration through solution processing, which can have a pronounced impact on the structure of the solid-state photoactive layer. Key challenges, including green solvent processing, stability and lifetime, burn-in, and thickness-dependence in non-fullerene OPVs are briefly discussed

    Modified two-potential approach to tunneling problems

    Get PDF
    One-body quantum tunneling to continuum is treated via the two-potential approach, dividing the tunneling potential into external and internal parts. We show that corrections to this approach can be minimized by taking the separation radius inside the interval determined by simple expressions. The resulting two-potential approach reproduces the resonance energy and its width, both for narrow and wide resonances. We also demonstrate that, without losing its accuracy, the two-potential approach can be modified to a form resembling the R-matrix theory, yet without any uncertainties of the latter related to the choice of the matching radius.Comment: 7 two-column pages, 3 figures, extra-explanation added, Phys. Rev. A, in pres

    Breif Announcement: A Calculus of Policy-Based Routing Systems

    Get PDF
    The BGP (Border Gateway Protocol) is the single inter-domain routing protocol that enables network operators within each autonomous system (AS) to influence routing decisions by independently setting local policies on route filtering and selection. This independence leads to fragile networking and makes analysis of policy configurations very complex. To aid the systematic and efficient study of the policy configuration space, this paper presents a reduction calculus on policy-based routing systems. In the calculus, we provide two types of reduction rules that transform policy configurations by merging duplicate and complementary router configurations to simplify analysis. We show that the reductions are sound, dual of each other and are locally complete. The reductions are also computationally attractive, requiring only local configuration information and modification. These properties establish our reduction calculus as a sound, efficient, and complete theory for scaling up existing analysis techniques

    An Inexpensive Flying Robot Design for Embodied Robotics Research

    Get PDF
    Flying insects are capable of a wide-range of flight and cognitive behaviors which are not currently understood. The replication of these capabilities is of interest to miniaturized robotics, because they share similar size, weight, and energy constraints. Currently, embodiment of insect behavior is primarily done on ground robots which utilize simplistic sensors and have different constraints to flying insects. This limits how much progress can be made on understanding how biological systems fundamentally work. To address this gap, we have developed an inexpensive robotic solution in the form of a quadcopter aptly named BeeBot. Our work shows that BeeBot can support the necessary payload to replicate the sensing capabilities which are vital to bees' flight navigation, including chemical sensing and a wide visual field-of-view. BeeBot is controlled wirelessly in order to process this sensor data off-board; for example, in neural networks. Our results demonstrate the suitability of the proposed approach for further study of the development of navigation algorithms and of embodiment of insect cognition
    • …
    corecore