50 research outputs found

    Centre of pressure characteristics in normal, planus and cavus feet

    Get PDF
    Background The aim of this study was to compare centre of pressure (COP) characteristics between healthy adults with normal, planus or cavus feet who were allocated to groups based on reliable foot posture measurement techniques. Methods Ninety-two healthy adult participants (aged 18 to 45) were recruited and classified as either normal (n = 35), pes planus (n = 31) or pes cavus (n = 26) based on Foot Posture Index, Arch Index and normalised navicular height truncated measurements. Barefoot walking trials were conducted using an emed®-x 400 plantar pressure system (Novel GmbH, Munich, Germany). Average, maximum, minimum and range (difference between maximum and minimum) values were calculated for COP velocity and lateral-medial force index during loading response, midstance, terminal stance and pre-swing phases of stance. The COP excursion index was also calculated. One-way analyses of variance were used to compare the three foot posture groups. Results The cavus foot exhibited the slowest average and minimum COP velocity during terminal stance, but this pattern was reversed during pre-swing, when the cavus foot exhibited the fastest maximum COP velocity. The planus foot exhibited the smallest lateral medial force index range during terminal stance. There were no differences between the groups for COP excursion index. Conclusion These findings indicate that there are differences in COP characteristics between foot postures, which may represent different mechanisms for generating force to facilitate forward progression of the body during the propulsive phases of gait

    Identification of membrane-type 1 matrix metalloproteinase tyrosine phosphorylation in association with neuroblastoma progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma is a pediatric tumor of neural crest cells that is clinically characterized by its variable evolution, from spontaneous regression to malignancy. Despite many advances in neuroblastoma research, 60% of neuroblastoma, which are essentially metastatic cases, are associated with poor clinical outcome due to the lack of effectiveness of current therapeutic strategies. Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), an enzyme involved in several steps in tumor progression, has previously been shown to be associated with poor clinical outcome for neuroblastoma. Based on our recent demonstration that MT1-MMP phosphorylation is involved in the growth of fibrosarcoma tumors, we examined the potential role of phosphorylated MT1-MMP in neuroblastoma progression.</p> <p>Methods</p> <p>Tyrosine phosphorylated MT1-MMP was immunostained on tissue microarray samples from 55 patients with neuroblastoma detected by mass screening (known to be predominantly associated with favourable outcome), and from 234 patients with standard diagnosed neuroblastoma. In addition, the effects of a non phosphorylable version of MT1-MMP on neuroblastoma cell migration and proliferation were investigated within three-dimensional collagen matrices.</p> <p>Results</p> <p>Although there is no correlation between the extent of tyrosine phosphorylation of MT1-MMP (pMT1-MMP) and MYCN amplification or clinical stage, we observed greater phosphorylation of pMT1-MMP in standard neuroblastoma, while it is less evident in neuroblastoma from mass screening samples (P = 0.0006) or in neuroblastoma samples from patients younger than one year (P = 0.0002). <it>In vitro </it>experiments showed that overexpression of a non-phosphorylable version of MT1-MMP reduced MT1-MMP-mediated neuroblastoma cell migration and proliferation within a three-dimensional type I collagen matrix, suggesting a role for the phosphorylated enzyme in the invasive properties of neuroblastoma cells.</p> <p>Conclusion</p> <p>Overall, these results suggest that tyrosine phosphorylated MT1-MMP plays an important role in neuroblastoma progression and that its expression is preferentially observed in tumor specimens from neuroblastoma patients showing poor clinical outcome.</p

    Study of trunk asymmetry in normal children and adolescents

    Get PDF
    The scoliometer readings in both standing and sitting position of 2071 children and adolescents (1099 boys and 972 girls) aged from 5 to 18 years old were studied. The angle of trunk rotation (ATR) was measured, in order to quantify the existing trunk asymmetry. Children and adolescents were divided in two groups according to the severity of trunk asymmetry. In the first group asymmetry was 1 to 6 degrees and in the second group was 7 or more degrees. Radiographic and leg length inequality evaluation were also performed in a number of children. The mean frequency of symmetric (ATR = 0 degrees) boys and girls was 67.06% and 65.01% for the standing screening position and 76.5% and 75.1% for the sitting position, respectively. The mean difference of frequency of asymmetry (ATR > 0 degrees) at standing minus sitting forward bending position for boys and girls was 10.22% and 9.37%, respectively. The mean frequency of asymmetry of 7 or more degrees was 3.23% for boys and 3.92% for girls at the standing forward bending position and 1.62% and 2.21% at the sitting, respectively. Girls are found to express higher frequency of asymmetry than boys. Right trunk asymmetry was more common than left. The sitting position is the preferred screening position for examining the rib or loin hump during school screening as it demonstrates the best correlation with the spinal deformity exposing the real trunk asymmetry

    HIV Infection and Gut Mucosal Immune Function: Updates on Pathogenesis with Implications for Management and Intervention

    Get PDF
    HIV is primarily a sexually transmitted infection. However, given that the gastrointestinal tract (GIT) houses most of the body’s lymphocytes, including activated memory CD4+ T cells that are preferential targets for HIV, recent research has focused on the role of the GIT in transmission and pathogenesis. In health, the GIT maintains a balance between immune tolerance and rapid responsiveness. A complex network of innate and adaptive responses maintains this balance, which is severely perturbed in HIV infection. Recent studies have focused on mechanisms of GIT CD4+ T-cell depletion and epithelial disruption in HIV infection, the role of inflammation in accelerating viral dissemination, the kinetics of the adaptive response following transmission, and the extent of T-cell reconstitution following antiretroviral therapy. This review summarizes the results of recent investigations that may have important implications for the development of vaccines, microbicides, and therapeutic interventions for HIV and other mucosal pathogens

    Impact of HIV on Cell Survival and Antiviral Activity of Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are important mediators of innate immunity that act mainly through secretion of interferon (IFN)-α. Previous studies have found that these cells can suppress HIV in vitro; additionally, pDCs have been shown to be severely reduced in the peripheral blood of HIV-infected individuals. In the present study, we sought to determine the ability of pDCs to directly suppress viral replication ex vivo and to delineate the potential mechanisms whereby pDCs are depleted in HIV-infected individuals. We demonstrate that activated pDCs strongly suppress HIV replication in autologous CD4(+) T cells via a mechanism involving IFN-α as well as other antiviral factors. Of note, unstimulated pDCs from infected individuals who maintain low levels of plasma viremia without antiretroviral therapy were able to suppress HIV ex vivo via a mechanism requiring cell-to-cell contact. Our data also demonstrate that death of pDCs by both apoptosis and necrosis is induced by fusion of HIV with pDCs. Taken together, our data suggest that pDCs play an important role in the control of HIV replication and that high levels of viral replication in vivo are associated with pDC cell death via apoptosis and necrosis. Elucidation of the mechanism by which pDCs suppress HIV replication in vivo may have clinically relevant implications for future therapeutic strategies

    HIV-1 Infection of DC: Evidence for the Acquisition of Virus Particles from Infected T Cells by Antigen Uptake Mechanism

    Get PDF
    Dendritic cells (DC) play a pivotal role in transmission and dissemination of HIV-1. Earlier studies reported that DC present at the site of infection trap virus particles via DC-SIGN and transfer the virus to the interacting naïve T cells. This prompted us to ask the question whether DC could acquire virus from infected T cells during DC-T cell interaction. To address this, we investigated the likely transfer of virus from HIV-1 infected T cells to DC and the underlying mechanisms involved. Results indicate that DC acquire virus from infected T cells via antigen uptake mechanism and this results in infection of DC with expression of proteins directed by viral DNA. Further studies with HIV-1 lacking the Env protein also resulted in infection of DC. The use of antibodies against DC-SIGN and DC-SIGN-R ruled out a role for receptor in the infection of DC. Additional data show that DC infection is directly correlated with the ability of DC to take up antigen from infected T cells. Overall, these studies provide evidence to suggest that HIV-1, besides infecting immune cells, also utilizes immunological mechanism(s) to acquire and disseminate virus

    EBV Promotes Human CD8+ NKT Cell Development

    Get PDF
    The reports on the origin of human CD8+ Vα24+ T-cell receptor (TCR) natural killer T (NKT) cells are controversial. The underlying mechanism that controls human CD4 versus CD8 NKT cell development is not well-characterized. In the present study, we have studied total 177 eligible patients and subjects including 128 healthy latent Epstein-Barr-virus(EBV)-infected subjects, 17 newly-onset acute infectious mononucleosis patients, 16 newly-diagnosed EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. We have established human-thymus/liver-SCID chimera, reaggregated thymic organ culture, and fetal thymic organ culture. We here show that the average frequency of total and CD8+ NKT cells in PBMCs from 128 healthy latent EBV-infected subjects is significantly higher than in 17 acute EBV infectious mononucleosis patients, 16 EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. However, the frequency of total and CD8+ NKT cells is remarkably increased in the acute EBV infectious mononucleosis patients at year 1 post-onset. EBV-challenge promotes CD8+ NKT cell development in the thymus of human-thymus/liver-SCID chimeras. The frequency of total (3% of thymic cells) and CD8+ NKT cells (∼25% of NKT cells) is significantly increased in EBV-challenged chimeras, compared to those in the unchallenged chimeras (<0.01% of thymic cells, CD8+ NKT cells undetectable, respectively). The EBV-induced increase in thymic NKT cells is also reflected in the periphery, where there is an increase in total and CD8+ NKT cells in liver and peripheral blood in EBV-challenged chimeras. EBV-induced thymic CD8+ NKT cells display an activated memory phenotype (CD69+CD45ROhiCD161+CD62Llo). After EBV-challenge, a proportion of NKT precursors diverges from DP thymocytes, develops and differentiates into mature CD8+ NKT cells in thymus in EBV-challenged human-thymus/liver-SCID chimeras or reaggregated thymic organ cultures. Thymic antigen-presenting EBV-infected dendritic cells are required for this process. IL-7, produced mainly by thymic dendritic cells, is a major and essential factor for CD8+ NKT cell differentiation in EBV-challenged human-thymus/liver-SCID chimeras and fetal thymic organ cultures. Additionally, these EBV-induced CD8+ NKT cells produce remarkably more perforin than that in counterpart CD4+ NKT cells, and predominately express CD8αα homodimer in their co-receptor. Thus, upon interaction with certain viruses, CD8 lineage-specific NKT cells are developed, differentiated and matured intrathymically, a finding with potential therapeutic importance against viral infections and tumors

    Rapid Dissemination of SIV Follows Multisite Entry after Rectal Inoculation

    Get PDF
    Receptive ano-rectal intercourse is a major cause of HIV infection in men having sex with men and in heterosexuals. Current knowledge of the mechanisms of entry and dissemination during HIV rectal transmission is scarce and does not allow the development of preventive strategies. We investigated the early steps of rectal infection in rhesus macaques inoculated with the pathogenic isolate SIVmac251 and necropsied four hours to nine days later. All macaques were positive for SIV. Control macaques inoculated with heat-inactivated virus were consistently negative for SIV. SIV DNA was detected in the rectum as early as four hours post infection by nested PCR for gag in many laser-microdissected samples of lymphoid aggregates and lamina propria but never in follicle-associated epithelium. Scarce SIV antigen positive cells were observed by immunohistofluorescence in the rectum, among intraepithelial and lamina propria cells as well as in clusters in lymphoid aggregates, four hours post infection and onwards. These cells were T cells and non-T cells that were not epithelial cells, CD68+ macrophages, DC-SIGN+ cells or fascin+ dendritic cells. DC-SIGN+ cells carried infectious virus. Detection of Env singly spliced mRNA in the mucosa by nested RT-PCR indicated ongoing viral replication. Strikingly, four hours post infection colic lymph nodes were also infected in all macaques as either SIV DNA or infectious virus was recovered. Rapid SIV entry and dissemination is consistent with trans-epithelial transport. Virions appear to cross the follicle-associated epithelium, and also the digestive epithelium. Viral replication could however be more efficient in lymphoid aggregates. The initial sequence of events differs from both vaginal and oral infections, which implies that prevention strategies for rectal transmission will have to be specific. Microbicides will need to protect both digestive and follicle-associated epithelia. Vaccines will need to induce immunity in lymph nodes as well as in the rectum
    corecore