2 research outputs found

    (How Much) Does a Private WAN Improve Cloud Performance?

    Get PDF
    The buildout of private Wide Area Networks (WANs) by cloud providers allows providers to extend their network to more locations and establish direct connectivity with end user Internet Service Providers (ISPs). Tenants of the cloud providers benefit from this proximity to users, which is supposed to provide improved performance by bypassing the public Internet. However, the performance impact of private WANs is not widely understood. To isolate the impact of a private WAN, we measure from globally distributed vantage points to a large cloud provider, comparing performance when using its worldwide WAN and when forcing traffic to instead use the public Internet. The benefits are not universal. While 40% of our vantage points saw improved performance when using the WAN, half of our vantage points did not see significant performance improvement, and 10% had better performance over the public Internet. We find that the benefits of the private WAN tend to improve with client-to-server distance, but that the benefits (or drawbacks) to a particular vantage point depend on specifics of its geographic and network connectivity

    Internet Scale Reverse Traceroute

    No full text
    International audienceKnowledge of Internet paths allows operators and researchers to better understand the Internet and troubleshoot problems. Paths are often asymmetric, so measuring just the forward path only gives partial visibility. Despite the existence of Reverse Traceroute, a technique that captures reverse paths (the sequence of routers traversed by traffic from an arbitrary, uncontrolled destination to a given source), this technique did not fulfill the needs of operators and the research community, as it had limited coverage, low throughput, and inconsistent accuracy. In this paper we design, implement and evaluate revtr 2.0, an Internet-scale Reverse Traceroute system that combines novel measurement approaches and studies with a large-scale deployment to improve throughput, accuracy, and coverage, enabling the first exploration of reverse paths at Internet scale. revtr 2.0 can run 15M reverse traceroutes in one day. This scale allows us to open the system to external sources and users, and supports tasks such as traffic engineering and troubleshooting
    corecore