11 research outputs found

    Evidence for the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia

    Get PDF
    Background: Previous linkage and association studies have implicated the D-amino acid oxidase activator gene (DAOA)/G30 locus or neighbouring region of chromosome 13q33.2 in the genetic susceptibility to both schizophrenia and bipolar disorder. Four single nucleotide polymorphisms (SNPs) within the D-amino acid oxidase (DAO) gene located at 12q24.11 have also been found to show allelic association with schizophrenia.Methods: We used the case control method to test for genetic association with variants at these loci in a sample of 431 patients with schizophrenia, 303 patients with bipolar disorder and 442 ancestrally matched supernormal controls all selected from the UK population.Results: Ten SNPs spanning the DAOA locus were genotyped in these samples. In addition three SNPs were genotyped at the DAO locus in the schizophrenia sample. Allelic association was detected between the marker rs3918342 (M23), 3' to the DAOA gene and both schizophrenia (chi(2) = 5.824 p = 0.016) and bipolar disorder (chi(2) = 4.293 p = 0.038). A trend towards association with schizophrenia was observed for two other DAOA markers rs3916967 (M14, chi(2) = 3.675 p = 0.055) and rs1421292 (M24; chi(2) = 3.499 p = 0.062). A test of association between a three marker haplotype comprising of the SNPs rs778293 (M22), rs3918342 (M23) and rs1421292 (M24) and schizophrenia gave a global empirical significance of p = 0.015. No evidence was found to confirm the association of genetic markers at the DAO gene with schizophrenia.Conclusion: Our results provide some support for a role for DAOA in susceptibility to schizophrenia and bipolar disorder

    Failure to confirm allelic and haplotypic association between markers at the chromosome 6p22.3 dystrobrevin-binding protein 1 (DTNBP1) locus and schizophrenia

    Get PDF
    Background: Previous linkage and association studies may have implicated the Dystrobrevin-binding protein 1 (DTNBP1) gene locus or a gene in linkage disequilibrium with DTNBP1 on chromosome 6p22.3 in genetic susceptibility to schizophrenia.Methods: We used the case control design to test for of allelic and haplotypic association with schizophrenia in a sample of four hundred and fifty research subjects with schizophrenia and four hundred and fifty ancestrally matched supernormal controls. We genotyped the SNP markers previously found to be significantly associated with schizophrenia in the original study and also other markers found to be positive in subsequent studies.Results: We could find no evidence of allelic, genotypic or haplotypic association with schizophrenia in our UK sample.Conclusion: The results suggest that the DTNBP1 gene contribution to schizophrenia must be rare or absent in our sample. The discrepant allelic association results in previous studies of association between DTNBP1 and schizophrenia could be due population admixture. However, even positive studies of European populations do not show any consistent DTNBP1 alleles or haplotypes associated with schizophrenia. Further research is needed to resolve these issues. The possible confounding of linkage with association in family samples already showing linkage at 6p22.3 might be revealed by testing genes closely linked to DTNBP1 for allelic association and by restricting family based tests of association to only one case per family

    Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease

    Get PDF
    Background 1Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches

    Correction: genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease.

    Get PDF
    [This corrects the article on p. e13950 in vol. 5.]. Background: Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology: We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings: We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance: Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches

    A Haploview generated diagram of the location of SNPs in the DNTBP1 gene that were genotyped in this study

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Failure to confirm allelic and haplotypic association between markers at the chromosome 6p22.3 dystrobrevin-binding protein 1 (DTNBP1) locus and schizophrenia"</p><p>http://www.behavioralandbrainfunctions.com/content/3/1/50</p><p>Behavioral and brain functions : BBF 2007;3():50-50.</p><p>Published online 23 Sep 2007</p><p>PMCID:PMC2093937.</p><p></p> SNPs marked with an asterisk have been found to be associated with schizophrenia in previous studies. Marker to marker D' statistics are shown below with LD blocks defined as solid spine of LD with a D' > 0.8
    corecore