360 research outputs found

    Singular topologies in the Boulatov model

    Full text link
    Through the question of singular topologies in the Boulatov model, we illustrate and summarize some of the recent advances in Group Field Theory.Comment: 4 pages; proceedings of Loops'11 (May 2011, Madrid); v2: minor modifications matching published versio

    Uniform random colored complexes

    Full text link
    We present here random distributions on (D+1)(D+1)-edge-colored, bipartite graphs with a fixed number of vertices 2p2p. These graphs are dual to DD-dimensional orientable colored complexes. We investigate the behavior of quantities related to those random graphs, such as their number of connected components or the number of vertices of their dual complexes, as pp \to \infty. The techniques involved in the study of these quantities also yield a Central Limit Theorem for the genus of a uniform map of order pp, as pp \to \infty.Comment: 36 pages, 9 figures, minor additions and correction

    The 1/N expansion of colored tensor models in arbitrary dimension

    Full text link
    In this paper we extend the 1/N expansion introduced in [1] to group field theories in arbitrary dimension and prove that only graphs corresponding to spheres S^D contribute to the leading order in the large N limit.Comment: 4 pages, 3 figure

    Random tensor models in the large N limit: Uncoloring the colored tensor models

    Full text link
    Tensor models generalize random matrix models in yielding a theory of dynamical triangulations in arbitrary dimensions. Colored tensor models have been shown to admit a 1/N expansion and a continuum limit accessible analytically. In this paper we prove that these results extend to the most general tensor model for a single generic, i.e. non-symmetric, complex tensor. Colors appear in this setting as a canonical book-keeping device and not as a fundamental feature. In the large N limit, we exhibit a set of Virasoro constraints satisfied by the free energy and an infinite family of multicritical behaviors with entropy exponents \gamma_m=1-1/m.Comment: 15 page

    EPRL/FK Group Field Theory

    Full text link
    The purpose of this short note is to clarify the Group Field Theory vertex and propagators corresponding to the EPRL/FK spin foam models and to detail the subtraction of leading divergences of the model.Comment: 20 pages, 2 figure

    Topological Graph Polynomials in Colored Group Field Theory

    Full text link
    In this paper we analyze the open Feynman graphs of the Colored Group Field Theory introduced in [arXiv:0907.2582]. We define the boundary graph \cG_{\partial} of an open graph \cG and prove it is a cellular complex. Using this structure we generalize the topological (Bollobas-Riordan) Tutte polynomials associated to (ribbon) graphs to topological polynomials adapted to Colored Group Field Theory graphs in arbitrary dimension

    Functional Renormalization of Noncommutative Scalar Field Theory

    Full text link
    In this paper we apply the Functional Renormalization Group Equation (FRGE) to the non-commutative scalar field theory proposed by Grosse and Wulkenhaar. We derive the flow equation in the matrix representation and discuss the theory space for the self-dual model. The features introduced by the external dimensionful scale provided by the non-commutativity parameter, originally pointed out in \cite{Gurau:2009ni}, are discussed in the FRGE context. Using a technical assumption, but without resorting to any truncation, it is then shown that the theory is asymptotically safe for suitably small values of the ϕ4\phi^4 coupling, recovering the result of \cite{disertori:2007}. Finally, we show how the FRGE can be easily used to compute the one loop beta-functions of the duality covariant model.Comment: 38 pages, no figures, LaTe

    Bubbles and jackets: new scaling bounds in topological group field theories

    Get PDF
    We use a reformulation of topological group field theories in 3 and 4 dimensions in terms of variables associated to vertices, in 3d, and edges, in 4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4 dimensions, we obtain a bubble bound proving the suppression of singular topologies with respect to the first terms in the perturbative expansion (in the cut-off). We also prove a new, stronger jacket bound than the one currently available in the literature. We expect these results to be relevant for other tensorial field theories of this type, as well as for group field theory models for 4d quantum gravity.Comment: v2: Minor modifications to match published versio

    Two and four-loop β\beta-functions of rank 4 renormalizable tensor field theories

    Full text link
    A recent rank 4 tensor field model generating 4D simplicial manifolds has been proved to be renormalizable at all orders of perturbation theory [arXiv:1111.4997 [hep-th]]. The model is built out of ϕ6\phi^6 (ϕ(1/2)6\phi^6_{(1/2)}), ϕ4\phi^4 (ϕ(1)4\phi^4_{(1)}) interactions and an anomalous term (ϕ(2)4\phi^4_{(2)}). The β\beta-functions of this model are evaluated at two and four loops. We find that the model is asymptotically free in the UV for both the main ϕ(1/2)6\phi^6_{(1/2)} interactions whereas it is safe in the ϕ(1)4\phi^4_{(1)} sector. The remaining anomalous term turns out to possess a Landau ghost.Comment: 31 pages, 31 figures; improved versio
    corecore