In this paper we analyze the open Feynman graphs of the Colored Group Field
Theory introduced in [arXiv:0907.2582]. We define the boundary graph
\cG_{\partial} of an open graph \cG and prove it is a cellular complex.
Using this structure we generalize the topological (Bollobas-Riordan) Tutte
polynomials associated to (ribbon) graphs to topological polynomials adapted to
Colored Group Field Theory graphs in arbitrary dimension