50 research outputs found

    Postharvest Management and Value Addition of Ginger (Zingiber Officinale Roscoe): A Review

    Full text link
    Ginger is an important spice crop and India is one of the leading producer and exporter of ginger in the world. Ginger is widely used around the world in food as a spice both in fresh and dried form which adds flavour to the meal by creating spicy pungent taste. The chemical components of the ginger rhizome vary considerably depending on the location of cultivation and postharvest treatments. Ginger contains polyphenol compounds such as gingerol and its derivatives like zingiberone, bisabolene, camphene, geranial, linalool, borneol and oleoresin (combination of volatile oils and resin) that accounts for its characteristic aroma and therapeutic properties. Fresh ginger are perishable in nature and are spoiled due to improper handling, growth of spoilage microorganisms, susceptibility to rhizome rot, wilting and sprouting, action of naturally occurring enzymes, chemical reactions and structural changes during storage. Keeping in mind the low shelf-life of fresh ginger and inadequate facility for their modern storage leading to distress sale, value addition could be a viable alternative which will fetch remunerative price to the growers. The present scenario, nutritional importance, postharvest management, value added products of ginger have been discussed in detail in the review

    Topological and system‑level protein interaction network (pin) analyses to deduce molecular mechanism of curcumin

    Get PDF
    Curcumin is an important bioactive component of turmeric and also one of the important natural products, which has been investigated extensively. The precise mode of action of curcumin and its impact on system level protein networks are still not well studied. To identify the curcumin governed regulatory action on protein interaction network (PIN), an interectome was created based on 788 key proteins, extracted from PubMed literatures, and constructed by using STRING and Cytoscape programs. The PIN rewired by curcumin was a scale-free, extremely linked biological system. MCODE plug-in was used for sub-modulization analysis, wherein we identified 25 modules; ClueGo plug-in was used for the pathway’s enrichment analysis, wherein 37 enriched signalling pathways were obtained. Most of them were associated with human diseases groups, particularly carcinogenesis, inflammation, and infectious diseases. Finally, the analysis of topological characteristic like bottleneck, degree, GO term/pathways analysis, bio-kinetics simulation, molecular docking, and dynamics studies were performed for the selection of key regulatory proteins of curcumin-rewired PIN. The current findings deduce a precise molecular mechanism that curcumin might exert in the system. This comprehensive in-silico study will help to understand how curcumin induces its anti-cancerous, anti-inflammatory, and anti-microbial effects in the human body

    Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective

    Get PDF
    The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders

    Development of a novel HPTLC fingerprint method for simultaneous estimation of berberine and rutin in medicinal plants and their pharmaceutical preparations followed by its application in antioxidant assay

    Get PDF
    The present study was designed to develop and validate a high-performance thin-layer chromatography (HPTLC) system for the simultaneous quantitative determination of berberine and rutin in Tinospora cordifolia extract and their pharmaceutical preparations. Chromatographic development was done using a blend of n-hexane, ethyl acetate, glacial acetic acid and methanol (10:1.1:1.1:2.5, v/v) as the mobile phase. Detection was completed densitometrically at 254 nm. The RF estimation of berberine and rutin was observed to be 0.67 ± 0.02 and 0.47 ± 0.02, respectively. The developed HPTLC method was validated according to ICH guidelines; the method was specific, linear and accurate and can be used to determine berberine and rutin in marketed herbal preparations. The Tinospora cordifolia plant extract was further evaluated for antioxidant activity using HPTLC, and berberine was found to be more active than rutin during DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity. The method was found simple, rapid, accurate, specific and robust for the analysis of berberine and rutin in crude drug using the same method

    Role of Serine/Threonine Kinase 11 (STK11) or liver kinase B1 (LKB1) Gene in Peutz-Jeghers Syndrome

    Get PDF
    Peutz-Jeghers syndrome (PJS) is a well-described inherited syndrome, characterized by the development of gastrointestinal polyps and characteristic mucocutaneous freckling. PJS is an autosomal prevailing disease, due to genetic mutation on chromosome 19p, manifested by restricted mucocutaneous melanosis in association with gastrointestinal (GI) polyposis. The gene for PJS has recently been shown to be a serine/threonine kinase, known as LKB1 or STK11, which maps to chromosome subband 19p13.3. This gene has a putative coding region of 1302 bp, divided into nine exons, and acts as a tumor suppressor in the hamartomatous polyps of PJS patients and in the other neoplasms that develop in PJS patients. It is probable that these neoplasms develop from hamartomas, but it remains possible that the LKB1 or STK11 locus plays a role in a different genetic pathway of tumor growth in the cancers of PJS patients. This article focuses on the role of LKB1 or STK11 gene expression in PJS and related cancers

    Small interfering RNA for cancer treatment: overcoming hurdles in delivery

    Get PDF
    © 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies

    Hypoxia-inducible factor (HIF): fuel for cancer progression

    Get PDF
    Hypoxia is an integral part of the tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygenindependent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mechanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors

    Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update

    Get PDF
    Respiratory disorders, especially non-communicable, chronic inflammatory diseases, are amongst the leading causes of mortality and morbidity worldwide. Respiratory diseases involve multiple pulmonary components, including airways and lungs that lead to their abnormal physiological functioning. Several signaling pathways have been reported to play an important role in the pathophysiology of respiratory diseases. These pathways, in addition, become the compounding factors contributing to the clinical outcomes in respiratory diseases. A range of signaling components such as Notch, Hedgehog, Wingless/Wnt, bone morphogenetic proteins, epidermal growth factor and fibroblast growth factor is primarily employed by these pathways in the eventual cascade of events. The different aberrations in such cell-signaling processes trigger the onset of respiratory diseases making the conventional therapeutic modalities ineffective. These challenges have prompted us to explore novel and effective approaches for the prevention and/or treatment of respiratory diseases. In this review, we have attempted to deliberate on the current literature describing the role of major cell signaling pathways in the pathogenesis of pulmonary diseases and discuss promising advances in the field of therapeutics that could lead to novel clinical therapies capable of preventing or reversing pulmonary vascular pathology in such patients

    An overview of vaccine development for COVID-19

    Get PDF
    The COVID-19 pandemic continues to endanger world health and the economy. The causative SARS-CoV-2 coronavirus has a unique replication system. The end point of the COVID-19 pandemic is either herd immunity or widespread availability of an effective vaccine. Multiple candidate vaccines - peptide, virus-like particle, viral vectors (replicating and nonreplicating), nucleic acids (DNA or RNA), live attenuated virus, recombinant designed proteins and inactivated virus - are presently under various stages of expansion, and a small number of vaccine candidates have progressed into clinical phases. At the time of writing, three major pharmaceutical companies, namely Pfizer and Moderna, have their vaccines under mass production and administered to the public. This review aims to investigate the most critical vaccines developed for COVID-19 to date
    corecore