9 research outputs found

    Biallelic TMEM260 variants cause truncus arteriosus, with or without renal defects

    Get PDF
    Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi-exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse-shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007–0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype

    Biallelic TMEM260 variants cause truncus arteriosus, with or without renal defects

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-08-18, rev-recd 2021-09-22, accepted 2021-10-02, pub-electronic 2021-10-11Article version: VoRPublication status: PublishedFunder: Cancer Research UK; Id: http://dx.doi.org/10.13039/501100000289Funder: European Union's Horizon 2020; Grant(s): 779257Funder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100007155Funder: NHS EnglandFunder: NIHR Oxford Biomedical Research Centre ProgrammeFunder: Society for the Relief of Disabled Children, Hong KongFunder: Wellcome Trust; Id: http://dx.doi.org/10.13039/100010269; Grant(s): 203141/Z/16/ZAbstract: Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi‐exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse‐shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007–0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype

    Genetic assessment in primary hyperoxaluria: why it matters

    No full text
    Accurate diagnosis of primary hyperoxaluria (PH) has important therapeutic consequences. Since biochemical assessment can be unreliable, genetic testing is a crucial diagnostic tool for patients with PH to define the disease type. Patients with PH type 1 (PH1) have a worse prognosis than those with other PH types, despite the same extent of oxalate excretion. The relation between genotype and clinical phenotype in PH1 is extremely heterogeneous with respect to age of first symptoms and development of kidney failure. Some mutations are significantly linked to pyridoxine-sensitivity in PH1, such as homozygosity for p.G170R and p.F152I combined with a common polymorphism. Although patients with these mutations display on average better outcomes, they may also present with CKD stage 5 in infancy. In vitro studies suggest pyridoxine-sensitivity for some other mutations, but confirmatory clinical data are lacking (p.G47R, p.G161R, p.I56N/major allele) or scarce (p.I244T). These studies also suggest that other vitamin B6 derivatives than pyridoxine may be more effective and should be a focus for clinical testing. PH patients displaying the same mutation, even within one family, may have completely different clinical outcomes. This discordance may be caused by environmental or genetic factors that are unrelated to the effect of the causative mutation(s). No relation between genotype and clinical or biochemical phenotypes have been found so far in PH types 2 and 3. This manuscript reviews the current knowledge on the genetic background of the three types of primary hyperoxaluria and its impact on clinical management, including prenatal diagnosis

    Improved Outcome of Infantile Oxalosis Over Time in Europe: Data From the OxalEurope Registry

    Get PDF
    International audienceINTRODUCTION: Infantile oxalosis is the most severe form of primary hyperoxaluria type 1 (PH1), with onset of end-stage kidney disease (ESKD) during infancy. We aimed to analyze the outcome of these patients as our current understanding is limited owing to a paucity of reports.METHODS: A retrospective registry study was conducted using data from the OxalEurope registry. All PH1 patients with ESKD onset at age <1 year were analyzed.RESULTS: We identified 95 patients born between 1980 and 2018 with infantile oxalosis. Median (interquartile range [IQR]) age at ESKD was 0.4 (0.3-0.5) year. There were 4 patients diagnosed by family screening who developed ESKD despite early diagnosis. There were 11 patients who had biallelic missense mutations associated with vitamin B6 responsiveness. Of 89 patients, 27 (30%) died at a median age of 1.4 (0.6-2.0) years (5-year patient survival of 69%). Systemic oxalosis was described in 54 of 56 screened patients (96%). First transplantation was performed at a median age of 1.7 (1.3-2.9) years. In 42 cases, this procedure was a combined liver-kidney transplantation (LKTx), and in 23 cases, liver transplantations (LTx) was part of a sequential procedure. Survival rates of both strategies were similar. Patient survival was significantly higher in patients born after 2000. Intrafamilial phenotypic variability was present in 14 families of patients with infantile oxalosis.CONCLUSION: Nearly all screened patients with infantile oxalosis developed systemic disease. Mortality is still high but has significantly improved over time and might further improve under new therapies. The intrafamilial phenotypic variability warrants further investigation

    Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope

    No full text
    Primary hyperoxaluria (PH) is an inherited disorder that results from the overproduction of endogenous oxalate, leading to recurrent kidney stones, nephrocalcinosis and eventually kidney failure; the subsequent storage of oxalate can cause life-threatening systemic disease. Diagnosis of PH is often delayed or missed owing to its rarity, variable clinical expression and other diagnostic challenges. Management of patients with PH and kidney failure is also extremely challenging. However, in the past few years, several new developments, including new outcome data from patients with infantile oxalosis, from transplanted patients with type 1 PH (PH1) and from patients with the rarer PH types 2 and 3, have emerged. In addition, two promising therapies based on RNA interference have been introduced. These developments warrant an update of existing guidelines on PH, based on new evidence and on a broad consensus. In response to this need, a consensus development core group, comprising (paediatric) nephrologists, (paediatric) urologists, biochemists and geneticists from OxalEurope and the European Rare Kidney Disease Reference Network (ERKNet), formulated and graded statements relating to the management of PH on the basis of existing evidence. Consensus was reached following review of the recommendations by representatives of OxalEurope, ESPN, ERKNet and ERA, resulting in 48 practical statements relating to the diagnosis and management of PH, including consideration of conventional therapy (conservative therapy, dialysis and transplantation), new therapies and recommendations for patient follow-up

    Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria

    Get PDF
    The recent Chandos House meeting of the Alport Variant Collaborative extended the indications for screening for pathogenic variants in the COL4A5, COL4A3 and COL4A4 genes beyond the classical Alport phenotype (haematuria, renal failure; family history of haematuria or renal failure) to include persistent proteinuria, steroid-resistant nephrotic syndrome, focal and segmental glomerulosclerosis (FSGS), familial IgA glomerulonephritis and end-stage kidney failure without an obvious cause. The meeting refined the ACMG criteria for variant assessment for the Alport genes (COL4A3-5). It identified 'mutational hotspots' (PM1) in the collagen IV α5, α3 and α4 chains including position 1 Glycine residues in the Gly-X-Y repeats in the intermediate collagenous domains; and Cysteine residues in the carboxy non-collagenous domain (PP3). It considered that 'well-established' functional assays (PS3, BS3) were still mainly research tools but sequencing and minigene assays were commonly used to confirm splicing variants. It was not possible to define the Minor Allele Frequency (MAF) threshold above which variants were considered Benign (BA1, BS1), because of the different modes of inheritances of Alport syndrome, and the occurrence of hypomorphic variants (often Glycine adjacent to a non-collagenous interruption) and local founder effects. Heterozygous COL4A3 and COL4A4 variants were common 'incidental' findings also present in normal reference databases. The recognition and interpretation of hypomorphic variants in the COL4A3-COL4A5 genes remains a challenge

    Guidelines for Genetic Testing and Management of Alport Syndrome

    No full text
    Genetic testing for pathogenic COL4A3–5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3–COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause
    corecore