10 research outputs found

    Assessing Cerebellar Disorders with Wearable Inertial Sensor Data Using Time-Frequency and Autoregressive Hidden Markov Model Approaches

    No full text
    Wearable sensor data is relatively easily collected and provides direct measurements of movement that can be used to develop useful behavioral biomarkers. Sensitive and specific behavioral biomarkers for neurodegenerative diseases are critical to supporting early detection, drug development efforts, and targeted treatments. In this paper, we use autoregressive hidden Markov models and a time-frequency approach to create meaningful quantitative descriptions of behavioral characteristics of cerebellar ataxias from wearable inertial sensor data gathered during movement. We create a flexible and descriptive set of features derived from accelerometer and gyroscope data collected from wearable sensors worn while participants perform clinical assessment tasks, and use these data to estimate disease status and severity. A short period of data collection (<5 min) yields enough information to effectively separate patients with ataxia from healthy controls with very high accuracy, to separate ataxia from other neurodegenerative diseases such as Parkinson’s disease, and to provide estimates of disease severity

    At-home wearables and machine learning sensitively capture disease progression in amyotrophic lateral sclerosis

    No full text
    Abstract Amyotrophic lateral sclerosis causes degeneration of motor neurons, resulting in progressive muscle weakness and impairment in motor function. Promising drug development efforts have accelerated in amyotrophic lateral sclerosis, but are constrained by a lack of objective, sensitive, and accessible outcome measures. Here we investigate the use of wearable sensors, worn on four limbs at home during natural behavior, to quantify motor function and disease progression in 376 individuals with amyotrophic lateral sclerosis. We use an analysis approach that automatically detects and characterizes submovements from passively collected accelerometer data and produces a machine-learned severity score for each limb that is independent of clinical ratings. We show that this approach produces scores that progress faster than the gold standard Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (−0.86 ± 0.70 SD/year versus −0.73 ± 0.74 SD/year), resulting in smaller clinical trial sample size estimates (N = 76 versus N = 121). This method offers an ecologically valid and scalable measure for potential use in amyotrophic lateral sclerosis trials and clinical care

    Behavioral Correlates of Hippocampal Neural Sequences

    No full text
    Fund. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. Sequences of neural activity representing paths in an environment are expressed in the rodent hippocampus at three distinct time scales, with different hypothesized roles in hippocampal function. As an animal moves through an environment and passes through a series of place fields, place cells activate and deactivate in sequence, at the time scale of the animal’s movement (i.e., the behavioral time scale). Moreover, at each moment in time, as the animal’s location in the environment overlaps with the firing fields of many place cells, the active place cells fire in sequence during each cycle of the 4-12 Hz theta oscillation observed in the hippocampal local field potentials (i.e., the theta time scale), such that the neural activity, in general, represents a short path that begins slightly behind the animal and ends slightly ahead of the animal. These sequences have been hypothesized to play a role in the encoding and recall of episodes of behavior

    Objective Assessment of Upper-Extremity Motor Functions in Spinocerebellar Ataxia Using Wearable Sensors

    No full text
    The study presents a novel approach to objectively assessing the upper-extremity motor symptoms in spinocerebellar ataxia (SCA) using data collected via a wearable sensor worn on the patient&rsquo;s wrist during upper-extremity tasks associated with the Assessment and Rating of Ataxia (SARA). First, we developed an algorithm for detecting/extracting the cycles of the finger-to-nose test (FNT). We extracted multiple features from the detected cycles and identified features and parameters correlated with the SARA scores. Additionally, we developed models to predict the severity of symptoms based on the FNT. The proposed technique was validated on a dataset comprising the seventeen (n = 17) participants&rsquo; assessments. The cycle detection technique showed an accuracy of 97.6% in a Bland&ndash;Altman analysis and a 94% accuracy (F1-score of 0.93) in predicting the severity of the FNT. Furthermore, the dependency of the upper-extremity tests was investigated through statistical analysis, and the results confirm dependency and potential redundancies in the upper-extremity SARA assessments. Our findings pave the way to enhance the utility of objective measures of SCA assessments. The proposed wearable-based platform has the potential to eliminate subjectivity and inter-rater variabilities in assessing ataxia

    Using Smartphone Sensors for Ataxia Trials: Consensus Guidance by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers

    No full text
    Smartphone sensors are used increasingly in the assessment of ataxias. To date, there is no specific consensus guidance regarding a priority set of smartphone sensor measurements, or standard assessment criteria that are appropriate for clinical trials. As part of the Ataxia Global Initiative Digital-Motor Biomarkers Working Group (AGI WG4), aimed at evaluating key ataxia clinical domains (gait/posture, upper limb, speech and oculomotor assessments), we provide consensus guidance for use of internal smartphone sensors to assess key domains. Guidance was developed by means of a literature review and a two stage Delphi study conducted by an Expert panel, which surveyed members of AGI WG4, representing clinical, research, industry and patient-led experts, and consensus meetings by the Expert panel to agree on standard criteria and map current literature to these criteria. Seven publications were identified that investigated ataxias using internal smartphone sensors. The Delphi 1 survey ascertained current practice, and systems in use or under development. Wide variations in smartphones sensor use for assessing ataxia were identified. The Delphi 2 survey identified seven measures that were strongly endorsed as priorities in assessing 3/4 domains, namely gait/posture, upper limb, and speech performance. The Expert panel recommended 15 standard criteria to be fulfilled in studies. Evaluation of current literature revealed that none of the studies met all criteria, with most being early-phase validation studies. Our guidance highlights the importance of consensus, identifies priority measures and standard criteria, and will encourage further research into the use of internal smartphone sensors to measure ataxia digital-motor biomarkers
    corecore