80 research outputs found

    LncRNA gas5 regulates granulosa cell apoptosis and viability following radiation by x-ray via sponging miR-205- 5p and Wnt/β-catenin signaling pathway in granulosa cell tumor of ovary

    Get PDF
    Purpose: To investigate the role of lncRNA gas5 in ovarian granulosa cells exposed to x-ray in granulosa cell tumor of ovary (GCTO). Methods: KGN cell line was exposed to X-ray to mimic the radiotherapy for GCSO patients in vitro, cell viability was checked by CCK8 assays. RNA expression of apoptosis-related genes was determined by quantitative reverse transcriptase-polymerase reaction (qRT-PCR) while Western Blot for biomarkers in wnt/β-catenin signaling. Differential expressions of lncRNA gas5 were examined after cells were exposed to a ray for 0,24,48hs. We over expressed gas5 and assessed resultant cell viability, apoptosis and signaling. The sponging between gas5 and miR-205-5p was verified by luciferase assay. CCK8, qRT-PCR and Western blot were applied to investigate the correlation between miR-205-5p, cell viability, and apoptosis after miR-205-5p augmentation. Similarly, interaction between gas5 and miR-205-5p was assessed after co-transfection of miR-205-5p mimics and oe-gas5. Finally, wnt inhibitor was used to study the role of signaling pathway in KGN cells. Results: Exposure of KGN to x-ray reduced cell viability and increased apoptosis. Gas5showed reduced expression in the cells, while miR-205-5p  expression increased. Gas5 upregulation protected the cells against apoptosis and contributed to cell viability and activation of wnt//β-catenin signaling. lncRNA gas5 targeted miR-205-5p and miR-205-5p mimics counteracted the functions of up-regulated lncRNA gas5, regulating Wnt/β-catenin signaling pathway. Inactivation of Wnt/β-catenin suppressed cell viability. Conclusions: lncRNA gas5 regulates cell apoptosis and viability following cellular radiation, thus presenting a potential therapeutic target for the application radiotherapy in GCTO patients. Keywords: Ovary, Proliferation, Apoptosis, lncRNA gas5, Radiotherapy, β-catenin signalin

    LncRNA gas5 regulates granulosa cell apoptosis and viability following radiation by X-ray through sponging miR-205-5p and Wnt/β-catenin signaling pathway ingranulosa cell tumor of ovary

    Get PDF
    Purpose: The study explored the role of lncRNA gas5 in ovarian granulosa cells exposed to X-ray in granulosa cell tumor of  ovary(GCTO). Methods:Exposed the KGN cell line (KALANG, Beijing, China) to X-ray to mimic the radiotherapy for GCSO patients in vitro, cell viability was checked by CCK8 assays. RT-qPCR detected the RNA expression of apoptosis-related genes while Western Blot for biomarkers in wnt/β-catenin signaling. Differential expressions of lncRNA gas5 were examined after cells exposed to X ray for 0,24,48hs. We over expressed gas5 and assessed resultant cell viabilities, apoptosis and signaling. The sponging between gas5 and miR-205-5p was verified through Luciferase Assay. CCK8, RT-qPCR and Western Blot were applied for investigations into the correlation between miR-205-5p and cell viability and apoptosis after miR-205-5p augmentation. Similarly, the interactions between the gas5 and  miR-205-5p were assessed after co-transfection of miR-205-5p mimics and oe-gas5. Last, wnt inhibitor was used to study the role of signaling pathway in KGN cells. Results: Exposure of KGN toX-ray reduced cell viabilities and increased apoptosis. Gas5 had reduced expression in cells while  miR-205-5p increased. Gas5 upregulation could protect the cells from apoptosis and add to the cell viability and activation of wnt//β-catenin signaling. lncRNA gas5 targeted miR-205-5p and miR-205-5p mimics could counteract functions of up-regulated lncRNA gas5, regulating Wnt/β-catenin signaling pathway. Inactivation in Wnt/β-catenin could suppress cell viability. Conclusions: lncRNA gas5 regulated the cell apoptosis and viability after cellular radiation, which might be a potential therapeutic target to combine into radiotherapy for GCTO patients in clinical stage. Keywords: Ovary, proliferation, apoptosis, lncRNA gas5, x-ra

    Research progress on extraction, purification, structure and biological activity of Dendrobium officinale polysaccharides

    Get PDF
    Dendrobium officinale Kimura et Migo (D. officinale) is a traditional medicinal and food homologous plant that has been used for thousands of years in folk medicine and nutritious food. Recent studies have shown that polysaccharide is one of the main biologically active components in D. officinale. D. officinale polysaccharides possess several biological activities, such as anti-oxidant, heptatoprotective, immunomodulatory, gastrointestinal protection, hypoglycemic, and anti-tumor activities. In the past decade, polysaccharides have been isolated from D. officinale by physical and enzymatic methods and have been subjected to structural characterization and activity studies. Progress in extraction, purification, structural characterization, bioactivity, structure-activity relationship, and possible bioactivity mechanism of polysaccharides D. officinale were reviewed. In order to provide reference for the in-depth study of D. officinale polysaccharides and the application in functional food and biomedical research

    Minimally Invasive Surgical Approaches and Traditional Total Hip Arthroplasty: A Meta-Analysis of Radiological and Complications Outcomes

    Get PDF
    BACKGROUND: Minimally invasive total hip arthroplasty (MITHA) remains considerably controversial. Limited visibility and prosthesis malposition increase the risk of post-surgical complications compared to those of the traditional method. METHODS: A meta-analysis was undertaken of all published databases up to May 2011. The studies were divided into four subgroups according to the surgical approach taken. The radiological outcomes and complications of minimally invasive surgery were compared to traditional total hip arthroplasty (TTHA) using risk ratio, mean difference, and standardized mean difference statistics. RESULTS: In five studies involving the posterolateral approach, no significant differences were found between the MITHA groups and the TTHA groups in the acetabular cup abduction angle (p = 0.41), acetabular anteversion (p = 0.96), and femoral prosthesis position (p = 0.83). However, the femoral offset was significantly increased (WMD = 3.00; 95% CI, 0.40-5.60; p = 0.02). Additionally, there were no significant differences among the complications in both the groups (dislocations, nerve injury, infection, deep vein thrombosis, proximal femoral fracture) and revision rate (p>0.05). In three studies involving the posterior approach, there were no significant differences in radiological outcomes or all other complications between MITHA or TTHA groups (p>0.05). Three studies involved anterolateral approach, while 2 studies used the lateral approach. However, the information from imaging and complications was not adequate for statistical analysis. CONCLUSIONS: Posterior MITHA seems to be a safe surgical procedure, without the increased risk of post-operative complication rates and component malposition rates. The posterolateral approach THA may lead to increased femoral offset. The current data are not enough to reach a positive conclusion that lateral and anterolateral approaches will result in increased risks of adverse effects and complications at the prosthesis site

    Influence of “stress reversal” on rock resistivity during loading procedure

    No full text

    Scale effects on the supply–demand mismatches of ecosystem services in Hubei Province, China

    No full text
    Understanding the patterns, relationships, and driving forces between ecosystem services (ESs) supply–demand at multiple spatial scales can facilitate sustainable hierarchical management. However, the scale effects of ESs supply–demand mismatches were typically ignored, resulting in inadequate targeted ecosystem promotion policies. This study identified the supply–demand mismatches of the key ESs (grain production, water yield, carbon sequestration, and soil conservation) using the ecological supply–demand ratio and bivariate Moran's I at three grid and county scales from 2000 to 2020 in Hubei Province, China. Then the spatial regression models were applied to explore the driving forces of these mismatches. The major results revealed that (1) Hubei Province and counties located away from urban areas were self-sufficient in the ESs supply–demand, but the numbers of these counties declined over the twenty years. The characteristics of ESs mismatches in some patches may be obscured at coarser scales. (2) The directions of socioecological drivers were robust, but their intensities changed significantly at the four scales. The normalized difference vegetation index was the primary positive driver at the fine scale, while population, economy, and proportion of construction land became dominant drivers at coarser scales. Factors influencing mismatches were more diverse at the fine scale compared to the coarse scale. (3) Efficient strategies were scale-dependent and place-based. Different management units should clarify their responsibilities and strengthen linkages between upper and lower levels to achieve sustainable ESs development. At the provincial level, strengthening interregional cooperation and allocating surplus grain and water resources from the southwest to urban regions contributes to balancing regional ESs. At the county level, adopting region-specific strategies based on delineating ESs management zones is crucial. At finer management levels, incorporating micro-scale mismatch locations and natural background information can provide valuable guidance for localized ecological protection and restoration projects. The findings underscore the strengths of conducting assessments of ESs supply–demand at multiple scales, enabling different government levels to enhance effective ecosystem management and prevent misinformation

    A Pneumatic Tactile Sensor for Co-Operative Robots

    No full text
    Tactile sensors of comprehensive functions are urgently needed for the advanced robot to co-exist and co-operate with human beings. Pneumatic tactile sensors based on air bladder possess some noticeable advantages for human-robot interaction application. In this paper, we construct a pneumatic tactile sensor and apply it on the fingertip of robot hand to realize the sensing of force, vibration and slippage via the change of the pressure of the air bladder, and we utilize the sensor to perceive the object’s features such as softness and roughness. The pneumatic tactile sensor has good linearity, repeatability and low hysteresis and both its size and sensing range can be customized by using different material as well as different thicknesses of the air bladder. It is also simple and cheap to fabricate. Therefore, the pneumatic tactile sensor is suitable for the application of co-operative robots and can be widely utilized to improve the performance of service robots. We can apply it to the fingertip of the robot to endow the robotic hand with the ability to co-operate with humans and handle the fragile objects because of the inherent compliance of the air bladder
    • …
    corecore