139 research outputs found

    Magnetic Borophenes from an Evolutionary Search

    Full text link
    A computational methodology based on ab initio evolutionary algorithms and spin-polarized density functional theory was developed to predict two-dimensional magnetic materials. Its application to a model system borophene reveals an unexpected rich magnetism and polymorphism. A metastable borophene with nonzero thickness is an antiferromagnetic semiconductor from first-principles calculations, and can be further tuned into a half-metal by finite electron doping. In this borophene, the buckling and coupling among three atomic layers are not only responsible for magnetism, but also result in an out-of-plane negative Poisson\u27s ratio under uniaxial tension, making it the first elemental material possessing auxetic and magnetic properties simultaneously

    Analysis of corrections to the eikonal approximation

    Full text link
    Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.Comment: 10 pages, 8 figure

    Metabolomics and transcriptomics analyses provide new insights into the nutritional quality during the endosperm development of different ploidy rice

    Get PDF
    Autotetraploid rice is developed from diploid rice by doubling the chromosomes, leading to higher nutritional quality. Nevertheless, there is little information about the abundances of different metabolites and their changes during endosperm development in autotetraploid rice. In this research, two different kinds of rice, autotetraploid rice (AJNT-4x) and diploid rice (AJNT-2x), were subjected to experiments at various time points during endosperm development. A total of 422 differential metabolites, were identified by applying a widely used metabolomics technique based on LC-MS/MS. KEGG classification and enrichment analysis showed the differences in metabolites were primarily related to biosynthesis of secondary metabolites, microbial metabolism in diverse environments, biosynthesis of cofactors, and so on. Twenty common differential metabolites were found at three developmental stages of 10, 15 and 20 DAFs, which were considered the key metabolites. To identify the regulatory genes of metabolites, the experimental material was subjected to transcriptome sequencing. The DEGs were mainly enriched in starch and sucrose metabolism at 10 DAF, and in ribosome and biosynthesis of amino acids at 15 DAF, and in biosynthesis of secondary metabolites at 20 DAF. The numbers of enriched pathways and the DEGs gradually increased with endosperm development of rice. The related metabolic pathways of rice nutritional quality are cysteine and methionine metabolism, tryptophan metabolism, lysine biosynthesis and histidine metabolism, and so on. The expression level of the genes regulating lysine content was higher in AJNT-4x than in AJNT-2x. By applying CRISPR/Cas9 gene-editing technology, we identified two novel genes, OsLC4 and OsLC3, negatively regulated lysine content. These findings offer novel insight into dynamic metabolites and genes expression variations during endosperm development of different ploidy rice, which will aid in the creation of rice varieties with better grain nutritional quality

    Prediction of high-Tc superconductivity in ternary lanthanum borohydrides

    Get PDF
    The study of superconductivity in compressed hydrides is of great interest due to measurements of high critical temperatures (Tc) in the vicinity of room temperature, beginning with the observations of LaH10 at 170-190 GPa. However, the pressures required for synthesis of these high Tc superconducting hydrides currently remain extremely high. Here we show the investigation of crystal structures and superconductivity in the La-B-H system under pressure with particle-swarm intelligence structure searches methods in combination with first-principles calculations. Structures with six stoichiometries, LaBH, LaBH3, LaBH4, LaBH6, LaBH7 and LaBH8, were predicted to become stable under pressure. Remarkably, the hydrogen atoms in LaBH8 were found to bond with B atoms in a manner that is similar to that in H3S. Lattice dynamics calculations indicate that LaBH7 and LaBH8 become dynamically stable at pressures as low as 109.2 and 48.3 GPa, respectively. Moreover, the two phases were predicted to be superconducting with a critical temperature (Tc) of 93 K and 156 K at 110 GPa and 55 GPa, respectively. Our results provide guidance for future experiments targeting new hydride superconductors with both low synthesis pressures and high Tc.Comment: 16 pages, 5 figures

    Theory and Experiments of Pressure-Tunable Broadband Light Emission from Self-Trapped Excitons in Metal Halide Crystals

    Full text link
    Hydrostatic pressure has been commonly applied to tune broadband light emissions from self-trapped excitons (STE) in perovskites for producing white light and study of basic electron-phonon interactions. However, a general theory is still lacking to understand pressure-driven evolution of STE emissions. In this work we first identify a theoretical model that predicts the effect of hydrostatic pressure on STE emission spectrum, we then report the observation of extremely broadband photoluminescence emission and its wide pressure spectral tuning in 2D indirect bandgap CsPb2Br5 crystals. An excellent agreement is found between the theory and experiment on the peculiar experimental observation of STE emission with a nearly constant spectral bandwidth but linearly increasing energy with pressure below 2 GPa. Further analysis by the theory and experiment under higher pressure reveals that two types of STE are involved and respond differently to external pressure. We subsequently survey published STE emissions and discovered that most of them show a spectral blue-shift under pressure, as predicted by the theory. The identification of an appropriate theoretical model and its application to STE emission through the coordinate configuration diagram paves the way for engineering the STE emission and basic understanding of electron-phonon interaction
    corecore