214 research outputs found

    Optimization of Process Parameters of Stamping Forming of the Automotive Lower Floor Board

    Get PDF
    There are many process parameters which have great effect on the forming quality of parts during automobile panel stamping forming process. This paper took automotive lower floor board as the research object; the forming process was analyzed by finite element simulation using Dynaform. The influences of four main process parameters including BHF (blank holder force), die corner radius, friction coefficient, and die clearance on the maximum thinning rate and the maximum thickening rate were researched based on orthogonal experiment. The results show that the influences of each value of various factors on the target are not identical. On this basis, the optimization of the four parameters was carried out, and the high quality product was obtained and the maximum thinning rate and maximum thickening rate were effectively controlled. The results also show that the simulation analysis provides the basis for the optimization of the forming process parameters, and it can greatly shorten the die manufacturing cycles, reduce the production costs, and improve the production efficiency

    Research on flux of dry atmospheric falling dust and its characterization in a subtropical city, Guangzhou, South China

    Get PDF
    Guangzhou is the central city in the Pearl River Delta (PRD), China, and is one of the most polluted cities in the world. To characterize the ambient falling dust pollution, two typical sampling sites: urban (Wushan) and suburban (University Town) areas in Guangzhou city were chosen for falling dust collection over 1 year at time intervals of 1 or 2 months. The flux of dry deposition was calculated. In addition, mineral composition and morphology of atmospheric falling dust were studied by X-ray diffraction, scanning electron microscopy, and microscopic observation. The results revealed that the dust flux in Guangzhou city was 3.34–3.78 g/(m2 month) during the study period. The main minerals in the dust were quartz, illite, calcite, kaolinite, gypsum, plagioclase, dolomite, and amorphous matter. The morphological types included grained and flaky individual minerals, chain-like aggregates, spherical flying beads, and irregular aggregates, with the chain-like and spherical aggregates indicators of industrial ash. The major dusts were derived from industrial and construction activities. The gypsum present in the dust collected in winter season was not only derived from cement dust but may also have originated from the reaction of calcic material with sulfuric acids resulting from photooxidation of SOx and NOx, which confirmed serious air pollution due to SOx and NOx in Guangzhou. The abatement of fossil fuel combustion emissions and construction dust will have a significant beneficial effect on dust reduction

    The expression profile analysis of NKX2-5 knock-out embryonic mice to explore the pathogenesis of congenital heart disease

    Get PDF
    AbstractBackgroundMutation of NKX2-5 could lead to the development of congenital heart disease (CHD) which is a common inherited disease. This study aimed to investigate the pathogenesis of CHD in NKX2-5 knock-out embryonic mice.MethodsThe expression profile in the NKX2-5 knock-out embryonic mice (GSE528) was downloaded from Gene Expression Omnibus. The heart tissues from the null/heterozygous embryonic day 12.5 mice were compared with wild-type mice to identify differentially expressed genes (DEGs), and then DEGs corresponding to the transcriptional factors were filtered out based on the information in the TRANSFAC database. In addition, a transcriptional regulatory network was constructed according to transcription factor binding site information from the University of California Santa Cruz database. A pathway interaction network was constructed by latent pathways identification analysis.ResultsThe 42 DEGs corresponding to transcriptional factors from the null and heterozygous embryos were identified. The transcriptional regulatory networks included five down-regulated DEGs (SP1, SRY, JUND, STAT6, and GATA6), and six up-regulated DEGs [POU2F1, NFY (NFYA/NFYB/NFYC), USF2 and MAX]. Latent pathways analysis demonstrated that ribosome, glycolysis/gluconeogenesis, and dilated cardiomyopathy pathways significantly interacted.ConclusionThe identified DEGs and latent pathways could provide new comprehensive view for understanding the pathogenesis of CHD

    Study on Roadheader Cutting Load at Different Properties of Coal and Rock

    Get PDF
    The mechanism of cutting process of roadheader with cutting head was researched, and the influences of properties of coal and rock on cutting load were deeply analyzed. Aimed at the defects of traditional calculation method of cutting load on fully expressing the complex cutting process of cutting head, the method of finite element simulation was proposed to simulate the dynamic cutting process. Aimed at the characteristics of coal and rock which affect the cutting load, several simulations with different firmness coefficient were taken repeatedly, and the relationship between three-axis force and firmness coefficient was derived. A comparative analysis of cutting pick load between simulation results and theoretical formula was carried out, and a consistency was achieved. Then cutting process with a total cutting head was carried out on this basis. The results show that the simulation analysis not only provides a reliable guarantee for the accurate calculation of the cutting head load and improves the efficiency of the cutting head cutting test but also offers a basis for selection of cutting head with different geological conditions of coal or rock

    The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish

    Get PDF
    SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts

    A catalog of natural products occurring in watermelon— Citrullus lanatus

    Get PDF
    Sweet dessert watermelon ( Citrullus lanatus ) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines

    Mycobacterium tuberculosis Rv1987 protein attenuates inflammatory response and consequently alters microbiota in mouse lung

    Get PDF
    IntroductionHealthy lung microbiota plays an important role in preventing Mycobacterium tuberculosis (Mtb) infections by activating immune cells and stimulating production of T-helper cell type 1 cytokines. The dynamic stability of lung microbiota relies mostly on lung homeostasis. In our previous studies, we found that Mtb virulence factor, Rv1987 protein, can mediate host immune response and enhance mycobacterial survival in host lung. However, the alteration of lung microbiota and the contribution of lung microbiota dysbiosis to mycobacterial evasion in this process are not clear so far.MethodsM. smegmatis which does not contain the ortholog of Rv1987 protein was selected as a model strain to study the effects of Rv1987 on host lung microbiota. The lung microbiota, immune state and metabolites of mice infected by M. smegmatis overexpressing Rv1987 protein (MS1987) were detected and analyzed.ResultsThe results showed that Rv1987 inhibited inflammatory response in mouse lung and anaerobic bacteria and Proteobacteria, Bacteroidota, Actinobacteriota and Acidobacteriota bacteria were enriched in the lung tissues correspondingly. The immune alterations and microbiota dysbiosis affected host metabolic profiles, and some of significantly altered bacteria in MS1987-infected mouse lung, such as Delftia acidovorans, Ralstonia pickettii and Escherichia coli, led to anti-inflammatory responses in mouse lung. The secretory metabolites of these altered bacteria also influenced mycobacterial growth and biofilm formation directly.ConclusionAll these results suggested that Rv1987 can attenuate inflammatory response and alter microbiota in the lung, which in turn facilitates mycobacterial survival in the host

    Recent Progress in Perovskite Solar Cells Modified by Sulfur Compounds

    Get PDF
    In the past decade, organic–inorganic hybrid perovskite solar cells (PSCs) have begun to be increasingly studied worldwide owing to the superior properties of perovskite material. However, some issues have delayed their commercialization, such as their long-term stability, cost reduction, scale-up ability, and efficiency. The introduction of sulfur to PSCs can relieve the above issues because sulfur can passivate interfacial trap states, suppress charge recombination, and inhibit ion migration, thereby enhancing the stability of PSCs. Furthermore, Pb-S bonds provide new channels for carrier extraction. Herein, the sulfur-based compounds utilized in PSCs are summarized and classified according to their functions in the different layers of PSCs. The results indicate that these sulfur-based compounds have efficiently promoted the commercialization of PSCs. It is hoped that this review can help others understand the intrinsic phenomena of sulfur-based PSCs and motivate additional investigations

    Metabolomics and transcriptomics analyses provide new insights into the nutritional quality during the endosperm development of different ploidy rice

    Get PDF
    Autotetraploid rice is developed from diploid rice by doubling the chromosomes, leading to higher nutritional quality. Nevertheless, there is little information about the abundances of different metabolites and their changes during endosperm development in autotetraploid rice. In this research, two different kinds of rice, autotetraploid rice (AJNT-4x) and diploid rice (AJNT-2x), were subjected to experiments at various time points during endosperm development. A total of 422 differential metabolites, were identified by applying a widely used metabolomics technique based on LC-MS/MS. KEGG classification and enrichment analysis showed the differences in metabolites were primarily related to biosynthesis of secondary metabolites, microbial metabolism in diverse environments, biosynthesis of cofactors, and so on. Twenty common differential metabolites were found at three developmental stages of 10, 15 and 20 DAFs, which were considered the key metabolites. To identify the regulatory genes of metabolites, the experimental material was subjected to transcriptome sequencing. The DEGs were mainly enriched in starch and sucrose metabolism at 10 DAF, and in ribosome and biosynthesis of amino acids at 15 DAF, and in biosynthesis of secondary metabolites at 20 DAF. The numbers of enriched pathways and the DEGs gradually increased with endosperm development of rice. The related metabolic pathways of rice nutritional quality are cysteine and methionine metabolism, tryptophan metabolism, lysine biosynthesis and histidine metabolism, and so on. The expression level of the genes regulating lysine content was higher in AJNT-4x than in AJNT-2x. By applying CRISPR/Cas9 gene-editing technology, we identified two novel genes, OsLC4 and OsLC3, negatively regulated lysine content. These findings offer novel insight into dynamic metabolites and genes expression variations during endosperm development of different ploidy rice, which will aid in the creation of rice varieties with better grain nutritional quality
    • …
    corecore