23 research outputs found

    The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation-coupled calcium release and response to hemodynamic load

    Get PDF
    : Two related ER oxidation 1 (ERO1) proteins, ERO1α and ERO1β, dynamically regulate the redox environment in the mammalian endoplasmic reticulum (ER). Redox changes in cysteine residues on intralumenal loops of calcium release and reuptake channels have been implicated in altered calcium release and reuptake. These findings led us to hypothesize that altered ERO1 activity may affect cardiac functions that are dependent on intracellular calcium flux. We established mouse lines with loss of function insertion mutations in Ero1l and Ero1lb encoding ERO1α and ERO1β. The peak amplitude of calcium transients in homozygous Ero1α mutant adult cardiomyocytes was reduced to 42.0 ± 2.2% (n=10, P ≤ 0.01) of values recorded in wild-type cardiomyocytes. Decreased ERO1 activity blunted cardiomyocyte inotropic response to adrenergic stimulation and sensitized mice to adrenergic blockade. Whereas all 12 wild-type mice survived challenge with 4 mg/kg esmolol, 6 of 8 compound Ero1l and Ero1lb mutant mice succumbed to this level of β adrenergic blockade (P ≤ 0.01). In addition, mice lacking ERO1α were partially protected against progressive heart failure in a transaortic constriction model [at 10 wk postprocedure, fractional shortening was 0.31 ± 0.02 in the mutant (n=20) vs. 0.23 ± 0.03 in the wild type (n=18); P ≤ 0.01]. These findings establish a role for ERO1 in calcium homeostasis and suggest that modifying the lumenal redox environment may affect the progression of heart failure

    The application of custom 3D-printed prostheses with ultra-short stems in the reconstruction of bone defects: a single center analysis

    Get PDF
    Objective: Considering the advantages and widespread presence of 3D-printing technology in surgical treatments, 3D-printed porous structure prostheses have been applied in a wide range of the treatments of bone tumor. In this research, we aimed to assess the application values of the 3D-printed custom prostheses with ultra-short stems for restoring bone defects and maintaining arthrosis in malignant bone tumors of lower extremities in children.Methods: Seven cases of pediatric patients were included in this study. In all cases, the prostheses were porous titanium alloy with ultra-short stems. MSTS 93 (Musculoskeletal Tumor Society) scores were recorded for the functional recovery of the limbs. VAS (Visual analogue scale) scores were utilized to assess the degree of painfulness for the patients. X-ray and MRI (magnetic resonance imaging) were applied to evaluate the bone integration, prostheses aseptic loosening, prostheses fracture, wound healing, and tumor recurrence during follow-up.Results: During follow-up, none of the patients developed any postoperative complications, including prostheses aseptic loosening, prostheses fracture, or tumor recurrence. Radiological examinations during the follow-up showed that prostheses implanted into the residual bone were stably fitted and bone defects were effectively reconstructed. The MSTS 93 scores were 24.9 ± 2.9 (20–28). VAS scores were decreased to 5.8 ± 1.2 (4.0–7.0). No statistically significant differences in leg length discrepancy were observed at the time of the last follow-up.Conclusion: 3D-printing technology can be effectively applied throughout the entire surgical treatment procedures of malignant bone tumors, offering stable foundations for the initial stability of 3D-printed prostheses with ultra-short stems through preoperative design, intraoperative precision operation, and personalized prosthesis matching. With meticulous postoperative follow-up, close monitoring of postoperative complications was ensured. These favorable outcomes indicate that the utilization of 3D-printed custom prostheses with ultra-short stems is a viable alternative for reconstructing bone defects. However, further investigation is warranted to determine the long-term effectiveness of the 3D-printing technique

    Frozen inactivated autograft replantation for bone and soft tissue sarcomas

    Get PDF
    BackgroundThe frozen inactivation of autologous tumor bones using liquid nitrogen is an important surgical method for limb salvage in patients with sarcoma. At present, there are few research reports related to frozen inactivated autograft replantation.MethodsIn this study, we retrospectively collected the clinical data of patients with bone and soft tissue sarcoma treated with liquid nitrogen-frozen inactivated tumor bone replantation, and analyzed the safety and efficacy of this surgical method. The healing status of the frozen inactivated autografts was evaluated using the International Society of Limb Salvage (ISOLS) scoring system. Functional status of patients was assessed using the Musculoskeletal Tumor Society (MSTS) scale.ResultsThis study included 43 patients. The average length of the bone defect after tumor resection is 16.9 cm (range 6.3–35.3 cm). Patients with autograft not including the knee joint surface had significantly better healing outcomes (ISOLS scores) (80.6% ± 15% vs 28.2% ± 4.9%, P<0.001) and limb function (MSTS score) (87% ± 11.6% vs 27.2% ± 4.4%, P<0.001) than patients with autografts including the knee joint surface. The healing time of the end of inactivated autografts near the metaphyseal was significantly shorter than that of the end far away from the metaphyseal (9.8 ± 6.3 months vs 14.9 ± 6.3 months, P=0.0149). One patient had local recurrence, one had an autograft infection, five (all of whom had an autograft including the knee joint surface) had joint deformities, and seven had bone non-union.ConclusionFrozen inactivated autologous tumor bone replantation is safe and results in good bone healing. But this method is not suitable for patients with autograft involving the knee joint surface

    MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells

    Get PDF
    microRNAs play an important roles in cell growth, differentiation, proliferation and apoptosis. They can function either as tumor suppressors or oncogenes. We found that the overexpression of miR-192 inhibited cell proliferation in A549, H460 and 95D cells, and inhibited tumorigenesis in a nude mouse model. Both caspase-7 and the PARP protein were activated by the overexpression of miR-192, thus suggesting that miR-192 induces cell apoptosis through the caspase pathway. Further studies showed that retinoblastoma 1 (RB1) is a direct target of miR-192. Over-expression of miR-192 decreased RB1 mRNA and protein levels and repressed RB1-3′-UTR reporter activity. Knockdown of RB1 using siRNA resulted in a similar cell morphology as that observed for overexpression of miR-192. Additionally, RB1-siRNA treatment inhibited cell proliferation and induced cell apoptosis in lung cancer cells. Analysis of miRNA expression in clinical samples showed that miR-192 is significantly downregulated in lung cancer tissues compared to adjacent non-cancerous lung tissues. In conclusion, our results demonstrate that miR-192 is a tumor suppressor that can target the RB1 gene to inhibit cell proliferation and induce cell apoptosis in lung cancer cells. Furthermore, miR-192 was expressed at low levels in lung cancer samples, indicating that it might be a promising therapeutic target for lung cancer treatment

    Acupuncture Decreases NF-κB p65, miR-155, and miR-21 and Increases miR-146a Expression in Chronic Atrophic Gastritis Rats

    No full text
    Acupuncture has been used to treat chronic atrophic gastritis (CAG) in traditional Chinese medicine (TCM) for centuries. In this study, we evaluated the effect of acupuncture at Zusanli (ST36), Zhongwan (CV12), and Pishu (BL20) acupoints on weight changes of rats, histological changes of gastric glands, and expressions changes of nuclear factor-kappa B (NF-κB) p65, microRNA- (miR-) 155, miR-21, and miR-146a in CAG rats induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) combined with irregular diet. Consequently, we found that acupuncture treatment elevated body weight of rats significantly when compared to the model group. By observing histological changes, we found that the acupuncture group showed better improvement of gastric mucosa injury than the model group. Our results also demonstrated upregulation of NF-κB p65, miR-155, and miR-21 in gastric tissue of CAG rats and a positive correlation between miR-155 and miR-21. Relatively, expression of miR-146a was downregulated and negative correlation relationships between miR-146a and miR-155/miR-21 in CAG rats were observed. Additionally, expressions of NF-κB p65, miR-155, and miR-21 were downregulated and miR-146a was upregulated after acupuncture treatment. Taken together, our data imply that acupuncture can downregulate NF-κB p65, miR-155, and miR-21 and upregulate miR-146a expression in CAG rats. NF-κB p65, miR-155, miR-21, and miR-146a may play important roles in therapeutic effect of acupuncture in treating CAG

    Experimental Investigations into the Pyrolysis Mechanism and Composition of Ceramic Precursors Containing Boron and Nitrides with Different Boron Contents

    No full text
    In this work, a novel ceramic precursor containing boron, silicon, and nitrides (named SiBCN) was synthesized from liquid ceramic precursors. Additionally, its pyrolysis, microstructure, and chemical composition were studied at 1600 °C. The results showed that the samples with different boron contents had similar structural composition, and both of the two precursors had stable amorphous SiBN structures at 1400 °C, which were mainly composed of B-N and Si-N and endowed them with excellent thermo-oxidative stability. With the progress of the heating process, the boron contents increased and the structures became more amorphous, significantly improving the thermal stability of the samples in high-temperature environments. However, during the moisture treatment, the introduction of more boron led to worse moisture stability

    Prognostic Value of E-cadherin-, CD44-, and MSH2-associated Nomograms in Patients With Stage II and III Colorectal Cancer

    No full text
    BACKGROUND: To evaluate the prognostic value of E-cadherin, CD44, and MSH2 expression for colorectal cancer (CRC) and construct nomograms that can predict prognosis. METHODS: We retrospectively analyzed the expression of E-cadherin, CD44, and MSH2 in 223 paraffin-embedded stage II and III CRC specimens using immunohistochemistry in the training cohort. Their prognostic values were assessed using Kaplan–Meier curves and univariate and multivariate COX regression models. Moreover, a number of risk factors were used to form nomograms to evaluate survival, and Harrell's concordance index (C-index) was used to evaluate the predictive accuracy. Further validation of the nomograms was performed in an independent cohort of 115 cases. RESULTS: Low E-cadherin expression and low CD44 expression were significantly associated with diminished overall survival (OS) and disease-free survival (DFS) in stage II and III CRC patients and patients with negative MSH2 expression had better clinical outcomes. Moreover, the multivariate COX analysis identified E-cadherin, CD44 and MSH2 expression as independent prognostic factors for DFS and OS. Using these three markers and three clinicopathological risk variables, two nomograms were constructed and externally validated for predicting OS and DFS (C-index: training cohort, 0.779 (95% CI 0.722–0.835) and 0.771 (0.720–0.822), respectively; validation cohort, 0.773 (0.709–0.837) and 0.670 (0.594–0.747), respectively). CONCLUSION: The expression levels of E-cadherin, CD44 and MSH2 were independent prognostic factors for stage II and III CRC patients. By incorporating clinicopathological features and these biomarkers, we have established two nomograms that could be used to make individualized predictions for OS and DFS

    The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation‐coupled calcium release and response to hemodynamic load

    No full text
    Two related ER oxidation 1 (ERO1) proteins, ERO1α and ERO1β, dynamically regulate the redox environment in the mammalian endoplasmic reticulum (ER). Redox changes in cysteine residues on intralumenal loops of calcium release and reuptake channels have been implicated in altered calcium release and reuptake. These findings led us to hypothesize that altered ERO1 activity may affect cardiac functions that are dependent on intracellular calcium flux. We established mouse lines with loss of function insertion mutations in Ero1l and Ero1lb encoding ERO1α and ERO1β. The peak amplitude of calcium transients in homozygous Ero1α mutant adult cardiomyocytes was reduced to 42.0 ± 2.2% (n=10, P≤0.01) of values recorded in wild-type cardiomyocytes. Decreased ERO1 activity blunted cardiomyocyte inotropic response to adrenergic stimulation and sensitized mice to adrenergic blockade. Whereas all 12 wild-type mice survived challenge with 4 mg/kg esmolol, 6 of 8 compound Ero1l and Ero1lb mutant mice succumbed to this level of β adrenergic blockade (P≤0.01). In addition, mice lacking ERO1α were partially protected against progressive heart failure in a transaortic constriction model [at 10 wk postprocedure, fractional shortening was 0.31±0.02 in the mutant (n=20) vs. 0.23±0.03 in the wild type (n=18); P≤0.01]. These findings establish a role for ERO1 in calcium homeostasis and suggest that modifying the lumenal redox environment may affect the progression of heart failure.—Chin, K. T., Kang, G., Qu, J., Gardner, L. B., Coetzee, W. A., Zito, E., Fishman, G. I., Ron, R. The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation-coupled calcium release and response to hemodynamic load

    Effect of Flaxseed Supplementation on Milk and Plasma Fatty Acid Composition and Plasma Parameters of Holstein Dairy Cows

    No full text
    The objective of this study was to determine the effect of whole flaxseed and ground flaxseed supplementation on the composition of fatty acids in plasma and milk, particularly the content of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Thirty Holstein dairy cows were randomly assigned to three treatment groups. Cows were fed a total mixed ration without flaxseed (CK), 1500 g of whole flaxseed (WF), and 1500 g of ground flaxseed (GF) supplementation. There were no differences observed in dry matter intake, milk yield, energy-corrected milk, and 4% fat-corrected milk (p > 0.05). Compared with the CK group, the contents of α-linolenic acid (ALA), eicosatrienoic acid, and eicosapentaenoic acid increased in the plasma and milk WF and GF groups, and the content of docosahexaenoic acid and total n-3 PUFA was higher in GF than the other groups (p < 0.001). The ALA yield increased to 232% and 360% in WF and GF, respectively, compared to the CK group. Compared with the WF group, GF supplementation resulted in an increased milk ALA/ALA intake ratio (p < 0.001). Flaxseed supplementation increased the activity of GSH-Px and decreased the concentration of MDA in milk (p < 0.001). Plasma parameters did not differ among the treatments (p > 0.05). This result indicated that compared with the WF group, GF supplementation in the diet showed higher efficiency in increasing the total n-3 PUFA levels and the milk ALA/ALA intake ratio, and decreased the ratio of n-6 PUFAs to n-3 PUFAs in milk
    corecore