119 research outputs found

    A new method for clastic reservoir prediction based on numerical simulation of diagenesis: A case study of Ed1 sandstones in Bozhong depression, Bohai Bay Basin, China

    Get PDF
    The use of seismic exploration technique to provide reliable reservoir information is a conventional method. However, due to its quality and resolution reasons, it cannot satisfy the detailed research and characterization of reservoirs, especially the clastic reservoir with thin sand body. Diagenesis is a fundamental process in the development and formation of all petroleum reservoirs and is a major contributor to their ultimate physical properties. Based on numerical simulation of diagenesis, a new prediction method called geology prediction techniques is presented to simulate the evolution of the diagenetic stages, diagenetic facies and porosity of clastic reservoirs and ultimately for favorable reservoir prediction. It emphasizes the idea of dynamic quantitative research dominated by process recovery, the most important of which is the establishment of mathematical models, including mineral dissolution models, mineral cementation models and sediment compaction models using the experimental data in study area and the results of previous studies. The essence of this method is illustrated, and its effectiveness is proved using Ed1 clastic sandstones in the Bozhong depression, Bohai Bay Basin, China. At present, the reservoir is in the early diagenetic stage B (IB) and the middle diagenetic stage A1 (IIA1). The major diagenetic processes that influence the porosity of the sandstones in study area are mechanical compaction, carbonate cementation, quartz cementation, clay cementation, feldspar dissolution and carbonate dissolution. There are three types of sandstones including fine sandstone, siltstone, and argillaceous siltstone, and the variation range of primary porosity of these sandstones is from 26% to 38%. Compaction and carbonate cementation are the main reasons for porosity reduction, with porosity loss percentage by compaction (P-Com) and porosity loss percentage by cementation of carbonate (P-C-Car) being 53.1% ~ 7.8% (av. 41.9%) and 53.1% ~ 7.8% (av. 18%), respectively, while carbonate dissolution and feldspar dissolution can greatly improve reservoir physical property, with porosity increase percentage by dissolution of carbonate (P-D-Car) and porosity increase percentage by dissolution of feldspar (P-D-Fel) being 0 ~ 9.9% (av. 8.9%) and 0 ~ 27.8% (av. 9.4%), respectively. The predicted porosities match the measured porosities well.Cited as: Qian, W., Yin, T., Hou, G. A new method for clastic reservoir prediction based on numerical simulation of diagenesis: A case study of the Ed1 clastic sandstones in the Bozhong depression, Bohai Bay Basin, China. Advances in Geo-Energy Research, 2019, 3(1): 82-93, doi: 10.26804/ager.2019.01.0

    Downregulation of SPARC expression decreases gastric cancer cellular invasion and survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secreted protein acidic and rich in cysteine (SPARC) plays a key role in the development of many tissues and organ types. Aberrant SPARC expression was found in a wide variety of human cancers, contributes to tumor development. Because SPARC was found to be overexpressed in human gastric cancer tissue, we therefore to explore the expression of SPARC in gastric cancer lines and the carcinogenic mechanisms.</p> <p>Methods</p> <p>SPARC expression was evaluated in a panel of human gastric cancer cell lines. MGC803 and HGC 27 gastric cancer cell lines expressing high level of SPARC were transiently transfected with SPARC-specific small interfering RNAs and subsequently evaluated for effects on invasion and proliferation.</p> <p>Results</p> <p>Small interfering RNA-mediated knockdown of SPARC in MGC803 and HGC 27 gastric cancer cells dramatically decreased their invasion. Knockdown of SPARC was also observed to significantly increase the apoptosis of MGC803 and HGC 27 gastric cancer cells compared with control transfected group.</p> <p>Conclusions</p> <p>Our data showed that downregulating of SPARC inhibits invasion and growth of human gastric cancer cells. Thus, targeting of SPARC could be an effective therapeutic approach against gastric cancer.</p

    KRAS Ubiquitination at Lysine 104 Retains Exchange Factor Regulation by Dynamically Modulating the Conformation of the Interface

    Get PDF
    RAS proteins function as highly regulated molecular switches that control cellular growth. In addition to regulatory proteins, RAS undergoes a number of posttranslational modifications (PTMs) that regulate its activity. Lysine 104, a hot spot for multiple PTMs, is a highly conserved residue that forms key interactions that stabilize the RAS helix-2(H2)/helix-3(H3) interface. Mutation at 104 attenuates interaction with guanine nucleotide exchange factors (GEFs), whereas ubiquitination at lysine 104 retains GEF regulation. To elucidate how ubiquitination modulates RAS function, we generated monoubiquitinated KRAS at 104 using chemical biology approaches and conducted biochemical, NMR, and computational analyses. We find that ubiquitination promotes a new dynamic interaction network and alters RAS conformational dynamics to retain GEF function. These findings reveal a mechanism by which ubiquitination can regulate protein function

    A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation

    Get PDF
    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity

    Advantages of GaN Based Light-Emitting Diodes with a P-InGaN Hole Reservoir Layer

    Get PDF
    A p-type InGaN hole reservoir layer (HRL) was designed and incorporated in GaN based light-emitting diodes (LEDs) to enhance hole injection efficiency and alleviate efficiency droop. The fabricated LEDs with p-type HRL exhibited higher light output power, smaller emission energy shift and broadening as compared to its counterpart. Based on electrical and optical characteristics analysis and numerical simulation, these improvements are mainly attributed to the alleviated band bending in the last couple of quantum well and electron blocking layer, and thus better hole injection efficiency. Meanwhile, the efficiency droop can be effectively mitigated when the p-InGaN HRL was used

    Decreased Serum Free Testosterone in Workers Exposed to High Levels of Di-n-butyl Phthalate (DBP) and Di-2-ethylhexyl Phthalate (DEHP): A Cross-Sectional Study in China

    Get PDF
    BACKGROUND: Observations of adverse developmental and reproductive effects in laboratory animals and wildlife have fueled increasing public concern regarding the potential for various chemicals to impair human fertility. OBJECTIVE: Our objective in this study was to assess the effect of occupational exposure to high levels of phthalate esters on the balance of gonadotropin and gonadal hormones including luteinizing hormone, follicle-stimulating hormone, free testosterone (fT), and estradiol. METHODS: We examined urine and blood samples of 74 male workers at a factory producing unfoamed polyvinyl chloride flooring exposed to di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) and compared them with samples from 63 male workers from a construction company, group matched for age and smoking status. RESULTS: Compared to the unexposed workers, the exposed workers had substantially and significantly elevated concentrations of mono-n-butyl phthalate (MBP; 644.3 vs. 129.6 μg/g creatinine, p < 0.001) and mono-2-ethylhexyl phthalate (MEHP; 565.7 vs. 5.7 μg/g creatinine, p < 0.001). fT was significantly lower (8.4 vs. 9.7 μg/g creatinine, p = 0.019) in exposed workers than in unexposed workers. fT was negatively correlated to MBP (r = −0.25, p = 0.03) and MEHP (r = −0.19, p = 0.095) in the exposed worker group. Regression analyses revealed that fT decreases significantly with increasing total phthalate ester score (the sum of quartiles of MBP and MEHP; r = −0.26, p = 0.002). CONCLUSION: We observed a modest and significant reduction of serum fT in workers with higher levels of urinary MBP and MEHP compared with unexposed workers

    Identity and technology: Organizational control of knowledge-intensive work

    Get PDF
    Much has been written about the functioning of managerial ideologies in identity-based organizational control. However, less attention has been given to the role of information and communication technologies (ICTs) and identity defined by a technological discourse in regulating knowledge-intensive work. The purpose of this research is to examine the roles of identity and ICTs in the control of knowledge-intensive work. A case study of a technology service organization reveals that the construction and consumption of a technologist identity operate as organizational control, and that ICTs enable the functioning of a dialectic of technological control. This study also demonstrates the paradoxical nature of work knowledge that both empowers and controls knowledge-workers
    corecore