97 research outputs found

    The complete chloroplast genome sequence of Hyssopus cuspidatus Boriss. and analysis of phylogenetic relationships

    Get PDF
    Hyssopus cuspidatus is a member of the Lamiaceae family, members of which are often used to treat cough and asthma by the Uigurs. However, the Hyssopus genus has a limited number of known chloroplast genomes, making it difficult to compare species within the genus and to classify species within and outside the genus accurately. The introduction of the chloroplast genome method would therefore help improve the classification of the Hyssopus genus. This report presents the complete chloroplast sequences of Hyssopus cuspidatus. The chloroplast genome of H. cuspidatus is 149,678 bp long and contains 129 genes, including 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. We identified 46 single sequence repeats (SSRs), most of which were mononucleotide adenine–thymine. The analysis of the repeat sequences, codon usage, and comparison of chloroplast genomes showed a high degree of conservation. The plastid genomes exhibited a typical quartile structure. Four hypervariable regions were identified: accD–psal, psbZ–trnG–GCC, trnH–GUG–psbA, and atpH–atpI. Phylogenetic analysis revealed that the Hyssopus genus was closely related to the adjacent genus Dracocephalum. Our research conducted a comprehensive analysis of the characteristics of the Hyssopus genus and provided a detailed comparison of the differences between species within and outside of this genus. Through IR comparison, phylogenetic analysis, and variation region analysis, we discovered a close relationship between the genera Hyssopus and Dracocephalum and propose a new perspective on the phylogenetic classification of H. cuspidatus. These findings will support the continued identification, classification, and evolutionary analysis of this genus

    Experimental observation of highly anisotropic elastic properties of two-dimensional black arsenic

    Full text link
    Anisotropic two-dimensional layered materials with low-symmetric lattices have attracted increasing attention due to their unique orientation-dependent mechanical properties. Black arsenic (b-As), with the puckered structure, exhibits extreme in-plane anisotropy in optical, electrical and thermal properties. However, experimental research on mechanical properties of b-As is very rare, although theoretical calculations predicted the exotic elastic properties of b-As, such as anisotropic Young's modulus and negative Poisson's ratio. Herein, experimental observations on highly anisotropic elastic properties of b-As were demonstrated using our developed in situ tensile straining setup based on the effective microelectromechanical system. The cyclic and repeatable load-displacement curves proved that Young's modulus along zigzag direction was ~1.6 times greater than that along armchair direction, while the anisotropic ratio of ultimate strain reached ~2.5, attributed to hinge structure in armchair direction. This study could provide significant insights to design novel anisotropic materials and explore their potential applications in nanomechanics and nanodevices.Comment: 19 pages, 5 figure

    Highly Anisotropic Elastic Properties of Suspended Black Arsenic Nanoribbons

    Full text link
    Anisotropy, as an exotic degree of freedom, enables us to discover the emergent two-dimensional (2D) layered nanomaterials with low in-plane symmetry and to explore their outstanding properties and promising applications. 2D black arsenic (b-As) with puckered structure has garnered increasing attention these years owing to its extreme anisotropy with respect to the electrical, thermal, and optical properties. However, the investigation on mechanical properties of 2D b-As is still lacking, despite much effort on theoretical simulations. Herein, we report the highly anisotropic elastic properties of suspended b-As nanoribbons via atomic force microscope-based nanoindentation. It was found that the extracted Young's modulus of b-As nanoribbons exhibits remarkable anisotropy, which approximates to 72.2 +- 5.4 and 44.3 +- 1.4 GPa along zigzag and armchair directions, respectively. The anisotropic ratio reaches up to ~ 1.6. We expect that these results could lay a solid foundation for the potential applications of 2D anisotropic nanomaterials in the next-generation nanomechanics and optoelectronics.Comment: 17 pages, 5 figure

    Long Non Coding RNA MALAT1 Promotes Tumor Growth and Metastasis by Inducing Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma

    Get PDF
    The prognosis of advanced oral squamous cell carcinoma (OSCC) patients remains dismal, and a better understanding of the underlying mechanisms is critical for identifying effective targets with therapeutic potential to improve the survival of patients with OSCC. This study aims to clarify the clinical and biological significance of metastasis-associated long non-coding RNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in OSCC. We found that MALAT1 is overexpressed in OSCC tissues compared to normal oral mucosa by real-time PCR. MALAT1 served as a new prognostic factor in OSCC patients. When knockdown by small interfering RNA (siRNA) in OSCC cell lines TSCCA and Tca8113, MALAT1 was shown to be required for maintaining epithelial-mesenchymal transition (EMT) mediated cell migration and invasion. Western blot and immunofluorescence staining showed that MALAT1 knockdown significantly suppressed N-cadherin and Vimentin expression but induced E-cadherin expression in vitro. Meanwhile, both nucleus and cytoplasm levels of ÎČ-catenin and NF-ÎșB were attenuated, while elevated MALAT1 level triggered the expression of ÎČ-catenin and NF-ÎșB. More importantly, targeting MALAT1 inhibited TSCCA cell-induced xenograft tumor growth in vivo. Therefore, these findings provide mechanistic insight into the role of MALAT1 in regulating OSCC metastasis, suggesting that MALAT1 is an important prognostic factor and therapeutic target for OSCC

    Intralayer Negative Poisson's Ratio in Two-Dimensional Black Arsenic by Strain Engineering

    Full text link
    Negative Poisson's ratio as the anomalous characteristic generally exists in artificial architectures, such as re-entrant and honeycomb structures. The structures with negative Poisson's ratio have attracted intensive attention due to their unique auxetic effect and many promising applications in shear resistant and energy absorption fields. However, experimental observation of negative Poisson's ratio in natural materials barely happened, although various two-dimensional layered materials are predicted in theory. Herein, we report the anisotropic Raman response and the intrinsic intralayer negative Poisson's ratio of two-dimensional natural black arsenic (b-As) via strain engineering strategy. The results were evident by the detailed Raman spectrum of b-As under uniaxial strain together with density functional theory calculations. It is found that b-As was softer along the armchair than zigzag direction. The anisotropic mechanical features and van der Waals interactions play essential roles in strain-dependent Raman shifts and negative Poisson's ratio in the natural b-As along zigzag direction. This work may shed a light on the mechanical properties and potential applications of two-dimensional puckered materials.Comment: 23 pages, 4 figure

    ISA-Net: Improved spatial attention network for PET-CT tumor segmentation

    Full text link
    Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment

    Pressure-Modulated Structural and Magnetic Phase Transitions in Two-Dimensional FeTe: Tetragonal and Hexagonal Polymorphs

    Full text link
    Two-dimensional (2D) Fe-chalcogenides with rich structures, magnetisms and superconductivities are highly desirable to reveal the torturous transition mechanism and explore their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate novel phase transitions between various ordered states and to plot the seductive phase diagram. Herein, the structural evolution and transport characteristics of 2D FeTe were systematically investigated under extreme conditions through comparing two distinct symmetries, i.e., tetragonal (t-) and hexagonal (h-) FeTe. We found that 2D t-FeTe presented the pressure-induced transition from antiferromagnetic to ferromagnetic states at ~ 3 GPa, corresponding to the tetragonal collapse of layered structure. Contrarily, ferromagnetic order of 2D h-FeTe was retained up to 15 GPa, evidently confirmed by electrical transport and Raman measurements. Furthermore, the detailed P-T phase diagrams of both 2D t-FeTe and h-FeTe were mapped out with the delicate critical conditions. We believe our results can provide a unique platform to elaborate the extraordinary physical properties of Fe-chalcogenides and further to develop their practical applications.Comment: 22 Pages, 5 Figure

    Is Increasing Diet Diversity of Animal-Source Foods Related to Better Health-Related Quality of Life among Chinese Men and Women?

    Get PDF
    Diet plays a crucial role in regulating individuals’ lifestyles and is closely related to health. The intake of animal-sourced foods (ASF) provides the human body with high-quality protein and various micronutrients. This study aimed to investigate whether the diversity of animal foods has a positive impact on the health-related quality of life (HRQoL) among residents. The data came from the Shaanxi baseline survey of the Northwest Chinese Regional Ethnic Cohort Study, which recruited more than 100 thousand participants aged 35 to 74 from five provinces between June 2018 and May 2019. A total of 39,997 participants in Shaanxi (mean age: 50 years; 64% women) were finally included in this current study. The animal source food diet diversity score (ASFDDS) was established based on the frequency of consuming pork, mutton, beef, poultry, seafood, eggs, pure milk, and yogurt. The physical component score (PCS) and mental component score (MCS), ranging from 0 to 100 on the 12-Item Short Form Survey (SF-12), were used to assess participants’ HRQoL. Better PCS/MCS was defined as scores higher than the 90th percentile. The results showed that men had a higher intake of ASF and ASFDDS than women. After adjusting for potential confounders, compared with those who never or rarely consumed animal foods, the likelihood of having better PCS and MCS increased by 16% (OR = 1.16, 95%CI: 1.01–1.34) and 24% (OR = 1.24, 95%CI: 1.03–1.448), respectively, in men with an ASFDDS ≄ 2. In women, a 34% increase (OR = l.34, 95%CI: 116–l.54) likelihood for better PCS was observed for an ASFDDS ≄ 2, but no association was observed for MCS. Increasing each specific animal source’s food intake was associated with better PCS after adjusting for all covariates. However, for MCS, positive associations were only observed in seafood consumption among men and eggs among women. Restricted cubic splines showed a substantial dose-response association between intake frequency of animal-source foods and PCS, both in men and women. The study suggests that a diverse intake of animal-sourced foods can potentially improve the HRQoL of Chinese adults
    • 

    corecore