Highly Anisotropic Elastic Properties of Suspended Black Arsenic Nanoribbons

Abstract

Anisotropy, as an exotic degree of freedom, enables us to discover the emergent two-dimensional (2D) layered nanomaterials with low in-plane symmetry and to explore their outstanding properties and promising applications. 2D black arsenic (b-As) with puckered structure has garnered increasing attention these years owing to its extreme anisotropy with respect to the electrical, thermal, and optical properties. However, the investigation on mechanical properties of 2D b-As is still lacking, despite much effort on theoretical simulations. Herein, we report the highly anisotropic elastic properties of suspended b-As nanoribbons via atomic force microscope-based nanoindentation. It was found that the extracted Young's modulus of b-As nanoribbons exhibits remarkable anisotropy, which approximates to 72.2 +- 5.4 and 44.3 +- 1.4 GPa along zigzag and armchair directions, respectively. The anisotropic ratio reaches up to ~ 1.6. We expect that these results could lay a solid foundation for the potential applications of 2D anisotropic nanomaterials in the next-generation nanomechanics and optoelectronics.Comment: 17 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions