109 research outputs found

    The miR167-OsARF12 module regulates grain filling and grain size downstream of miR159

    Get PDF
    Grain weight and quality are always determined by the grain filling. Plant miRNAs have drawn attention as key targets for regulating grain size and yield. Yet the mechanisms underlying the regulation of grain size are largely unclear due to the complex networks controlling this trait. Our earlier studies proved that the suppressed expression of miR167 (STTM/MIM167) substantially increased grain weight. In a field test, the increased yield up to 12.90%-21.94% due to the significantly enhanced grain filling rate. Biochemical and genetic analyses reveal the regulatory effects of miR159 on miR167 expression. Further analysis indicates that OsARF12 is the major mediator of miR167 in regulating rice grain filling. Expectedly, over expressing OsARF12 could resemble the phenotype of STTM/MIM167 plants with respect to grain weight and grain filling rate. Upon in-depth analysis, we found that OsARF12 activates OsCDKF;2 expressions by directly binding to the TGTCGG motif in the promoter region. Flow cytometric analysis in young panicles of plants overexpressing OsARF12 and cell number examination of cdkf;2 mutants verify that OsARF12 positively regulates grain filling and grain size by targeting OsCDKF;2. Moreover, RNA-seq result suggests that miR167-OsARF12 module is involved in the cell development process and hormone pathways. Additionally, plants overexpressing OsARF12 or cdkf;2 mutants present enhanced or reduced sensitivity to exogenous auxin and brassinosteroid (BR) treatments, confirming that OsCDKF;2 targeting by OsARF12 mediates auxin and BR signaling. Our results reveal that miR167-OsARF12 module works downstream of miR159 to regulate rice grain filling and grain size by OsCDKF;2 through controlling cell division and mediating auxin and BR signals

    Joint profiling of DNA methylation and chromatin architecture in single cells.

    Get PDF
    We report a molecular assay, Methyl-HiC, that can simultaneously capture the chromosome conformation and DNA methylome in a cell. Methyl-HiC reveals coordinated DNA methylation status between distal genomic segments that are in spatial proximity in the nucleus, and delineates heterogeneity of both the chromatin architecture and DNA methylome in a mixed population. It enables simultaneous characterization of cell-type-specific chromatin organization and epigenome in complex tissues

    Fast Polarization Switching Demonstration Using Crossed-Planar Undulator in a Seeded Free Electron Laser

    Full text link
    Fast polarization switching of light sources is required over a wide spectral range to investigate the symmetry of matter. In this Letter, we report the first experimental demonstration of the crossed-planar undulator technique at a seeded free-electron laser, which holds great promise for the full control and fast switching of the polarization of short-wavelength radiation. In the experiment, the polarization state of the coherent radiation at the 2nd harmonic of the seed laser is switched successfully. The experiment results confirm the theory, and pave the way for applying the crossed-planar undulator technique for the seeded X-ray free electron lasers.Comment: 5 pages, 5 figure

    Uniform design for the optimization of Al2O3 nanofilms produced by electrophoretic deposition

    Get PDF
    Surface modification by means of nanostructures is of interest to enhance boiling heat transfer in various applications including the organic Rankine cycle (ORC). With the goal of obtaining rough and dense aluminum oxide (Al2O3) nanofilms, the optimal combination of process parameters for electrophoretic deposition (EPD) based on the uniform design (UD) method is explored in this paper. The detailed procedures for the EPD process and UD method are presented. Four main influencing conditions controlling the EPD process were identified as nanofluid concentration, deposition time, applied voltage and suspension pH. A series of tests were carried out based on the UD experimental design. A regression model and statistical analysis were applied to the results. Sensitivity analyses of the effect of the four main parameters on the roughness and deposited mass of Al2O3 films were also carried out. The results showed that Al2O3 nanofilms were deposited compactly and uniformly on the substrate. Within the range of the experiments, the preferred combination of process parameters was determined to be nanofluid concentration of 2 wt.%, deposition time of 15 min, applied voltage of 23 V and suspension pH of 3, yielding roughness and deposited mass of 520.9 nm and 161.6 × 10− 4 g/cm2, respectively. A verification experiment was carried out at these conditions and gave values of roughness and deposited mass within 8% error of the expected ones as determined from the UD approach. It is concluded that uniform design is useful for the optimization of electrophoretic deposition requiring only 7 tests compared to 49 using the orthogonal design method

    Comparative analysis of the phenolic contents and antioxidant activities of different parts of two pomegranate (Punica granatum L.) Cultivars: ‘Tunisia’ and ‘Qingpi’

    Get PDF
    Pomegranate (Punica granatum L.), with its abundant phenolic substances and strong antioxidant activity, holds significant research and utilization potential across various organs. However, there have been few studies on the phenolic content and antioxidant activity of different parts of pomegranate, especially the placenta. This study investigated the phenolic content and antioxidant activity of fruits, flowers, and leaves of two pomegranate varieties, ‘Tunisia’ and ‘Qingpi’, throughout their growth and development. Results indicated significant variations in phenolic content among different organs, with petals exhibiting the highest total polyphenol content (TPC, 49.40 mg GAE/g FW) and total anthocyanin content (TMAC, 1938.54 nmol/g FW). Placenta contained the highest levels of total flavonoids (TFC, 173.58 mg RE/g FW) and punicalagin (109.30 mg/g FW). The peel had the highest content of total flavanols (TFAC, 19.42 mg CE/g FW). Over the course of pomegranate development, total polyphenols, total flavonoids, total flavanols, punicalagin, and antioxidant activity declined in different organs. Antioxidant activity followed the order: fruit > flower > leaf, with the placenta exhibiting the highest antioxidant activity among fruits. Antioxidant activity showed a significant positive correlation with total polyphenols (R2 = 0.77-1.00), total flavonoids (R2 = 0.71-0.99, except tegmens), and punicalagin (R2 = 0.71-1.00). This study provides a comparative analysis of the phenolic content and antioxidant activity in different organs of pomegranate, highlighting the placenta as the primary source of punicalagin. This study provides a theoretical basis for the development and utilization of pomegranate phenolic compounds

    A novel model of estimating sea state bias based on multi-layer neural network and multi-source altimeter data

    No full text
    In this article, we propose a novel model for estimating sea state bias (SSB) based on multi-layer neural network and multi-source altimeter data from the Topex/Poseidon (T/P), Jason-2, and Jason-3 altimeters. Significant wave height (SWH), wind speed (U) and backscatter coefficient (σ0) are considered as the inputs of the multi-layer neural network, while the corresponding SSB as outputs. The neural network has four layers, with structure 3-3-6-1. Data from three seasons are employed for the neural network training, and the trained model is applied for the SSB estimation on the HY-2 altimeter data. To show the effectiveness of the adopted model, the correlations between SSB and SWH, U and σ0 are analyzed. Moreover, the explained variance and residual error are compared with a conventional parametric model for SSB estimation. The results demonstrate that multi-layer neural network trained on multi-source altimeter data performs superior to the conventional SSB estimation model

    Effect Of Alumina-based Fiber On The Mid-temperature Strength Of Integral Ceramic Mold For Casting Hollow Turbine Blade

    No full text
    The fabrication process of integral ceramic mold based on stereolithography and gelcasting can eliminate the assembly errors between cores and that between cores and shell in the traditional manufacturing process of ceramic molds. However, the bending strength of the mold at 500°C (mid-temperature strength) drops significantly during pre-sintering because the gel networks surrounded the ceramic particles are burnt off, which often causes the core fracture or shell cracking of the integral ceramic mold. In this paper, short alumina-based fibers were added into the gelcast ceramic slurry to improve the mid-temperature of the ceramic mold. Filling experiment and computed tomography (CT) test were performed to investigate the effect of fiber content and fiber length on the filling ability of ceramic slurry in the cavity with small complex structures. The mid-temperature strengths of the ceramic mold were tested. Microstructures of the ceramic mold sintered at 500°C were observed by scanning electron microscope (SEM). It was found that the filling ability of the ceramic slurry decreased as the fiber length and fiber content increased, however the mid-temperature strength of the ceramic mold increased with the fiber length and fiber content. When 1.5wt% short alumina-based fibers with lengths between 0.5 mm and 1 mm were added, the ceramic slurry could meet the requirement of gelcasting, and the midtemperature strength of the ceramic mold was improved from 0.78 MPa to 1.65 MPa.Published versio

    Effect of combined anti-slide piles with circular section to reinforce the slope containing the fault crushed zone

    No full text
    With the continuous development of highway construction in mountainous areas in China, an increasing number of highway slopes encounter fault crushed zones in complex geological structures. It is urgent to strengthen slopes with anti-slide pile structures. However, the traditional manual digging pile construction mode has several disadvantages such as high risk and low efficiency. In contrast, the combined anti-slide pile with circular section shows great advantages of high construction efficiency, safety and convenience. Therefore, it is of practical significance to explore its reinforcement effect on slopes with fault crushed zones. In this paper, five physical models of different thicknesses of broken zones and combined anti-slide piles with circular section are designed by using a home-made slope physical test system. The loading is applied on the slope top step by step. Pile strain, pile top position and soil pressure behind the pile are monitored during loading. A high-speed camera was used to capture the images of sliding body deformation and damage, which were post-processsed using PIV technology. Experimental research shows that the combined anti-slide pile with circular section can reinforce the slope by limiting the horizontal displacement of the sliding body behind the pile and confining the sliding body between the front and rear piles. The evolution of the sliding body can be divided into three stages: deformation compaction, accelerated deformation and failure slip. The ratio of the soil pressure behind the piles of the front and rear piles is between 1/3 and 1/2. The position of the maximum positive bending moment will move down after fracturing of the fault crushed zone. The thickness of the fault crushed zone affects the reinforcement effect of the combined section anti-slide pile with circular section. With the increase in the fault crushed zone thickness, the horizontal slip rate of the sliding body increases, the pile top displacement increases, and the maximum positive bending moment decreases. The bending moment and pile top displacement calculated by the model test and numerical simulation are in good agreement. The research results can provide a reference for the design of combined anti-slide piles with circular section in slope engineering
    • …
    corecore