112 research outputs found

    A Novel Gearbox Strength Check Method by Finite Element Analysis

    Get PDF
    In order to meet the design requirements of gearbox for different gears, a novel method to verify bolts and gearbox housing is applied, which reduced the time and cost of experimental testing. The finite element analysis of this article is divided into two parts. Firstly, the axial force of the bolt is calculated by finite element method, and the bolts are verified according to VDI2230 standard. Secondly, the force of the gearbox housing is calculated and the strength of the gearbox housing in different gears is verified. Results show that the maximum axial force exerted on the bolt is 4761.8N at the hole 16. The maximum stress value of the gearbox is 234.2 MPa in the first gear state, which closes to the tensile strength 240 MPa. The maximum stress value of the improved gearbox housing is reduced to 133.9 MPa, meeting the usage requirements. In addition, this article established a finite element verification process for the gearbox housing. Although the grid size and boundary conditions apply only to this type of gearbox, the analysis process is applicable to the static strength verification of any gearbox housing

    Gut Bacterial Communities of Lymantria xylina and Their Associations with Host Development and Diet

    Get PDF
    The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of Lymantria xylina in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of L. xylina fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in L. xylina mutualistic symbionts. Acinetobacter and Enterococcus were dominant in/on eggs. In the first instar larvae, Acinetobacter accounted for 33.52% of the sterilized artificial diet treatment, while Enterococcus (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on L. xylina and might provide new possibilities for improving the control of these bacteria

    Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization

    Get PDF
    We report the construction of a biodegradable macroporous scaffold with a nano-crystal surface microstructure capable of releasing bioactive ions for highly effective osteogenesis and vascularization.</p

    CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with Modality-Correlated Cross-Attention for Brain Tumor Segmentation

    Full text link
    Brain tumor segmentation (BTS) in magnetic resonance image (MRI) is crucial for brain tumor diagnosis, cancer management and research purposes. With the great success of the ten-year BraTS challenges as well as the advances of CNN and Transformer algorithms, a lot of outstanding BTS models have been proposed to tackle the difficulties of BTS in different technical aspects. However, existing studies hardly consider how to fuse the multi-modality images in a reasonable manner. In this paper, we leverage the clinical knowledge of how radiologists diagnose brain tumors from multiple MRI modalities and propose a clinical knowledge-driven brain tumor segmentation model, called CKD-TransBTS. Instead of directly concatenating all the modalities, we re-organize the input modalities by separating them into two groups according to the imaging principle of MRI. A dual-branch hybrid encoder with the proposed modality-correlated cross-attention block (MCCA) is designed to extract the multi-modality image features. The proposed model inherits the strengths from both Transformer and CNN with the local feature representation ability for precise lesion boundaries and long-range feature extraction for 3D volumetric images. To bridge the gap between Transformer and CNN features, we propose a Trans&CNN Feature Calibration block (TCFC) in the decoder. We compare the proposed model with five CNN-based models and six transformer-based models on the BraTS 2021 challenge dataset. Extensive experiments demonstrate that the proposed model achieves state-of-the-art brain tumor segmentation performance compared with all the competitors

    Periodic elastic nanodomains in ultrathin tetrogonal-like BiFeO3 films

    Full text link
    We present a synchrotron grazing incidence x-ray diffraction analysis of the domain structure and polar symmetry of highly strained BiFeO3 thin films grown on LaAlO3 substrate. We revealed the existence of periodic elastic nanodomains in the pure tetragonal-like BFO ultrathin films down to a thickness of 6 nm. A unique shear strain accommodation mechanism is disclosed. We further demonstrated that the periodicity of the nanodomains increases with film thickness but deviates from the classical Kittel's square root law in ultrathin thickness regime (6 - 30 nm). Temperature-dependent experiments also reveal the disappearance of periodic modulation above 90C due to a MC-MA structural phase transition.Comment: Accepted in Phys. Rev.

    Influence of the ratio of planktonic to benthic diatoms on lacustrine organic matter δ13C from Erlongwan maar lake, northeast China

    Get PDF
    Carbon isotope ratio (δ13Corg) values of organic matter in lake sediments are commonly used to reconstruct environmental change, but the factors which influence change are varied and complex. Here we report δ13C values for sediments from Erlongwan maar lake in northeast China. In this record, changes in δ13C cannot be explained by simple changes in aquatic productivity. Instead, values were likely influenced by differences in the ratio between planktonic and benthic algae, as indicated by the remains of diatoms. This is because the variation of δ13Corg in algae from different habitats is controlled by the thickness of the diffusive boundary layer, which is dependent on the turbulence of the water. Compared with benthic algae, which grow in relatively still water, pelagic algae are exposed to greater water movement. This is known to dramatically reduce the thickness of the boundary layer and was found to cause even more severe δ13C depletion. In Erlongwan maar lake, low values were linked to the dominance of planktonic diatoms during the period commonly known as the Medieval Warm Period. Values gradually increased with the onset of the Little Ice Age, which we interpret as being driven by an increase in the proportion of benthic taxa, due to effect of the colder climate. The increase in planktonic diatoms at the end of the Little Ice Age, linked to higher temperature and a reduction in ice cover, resulted in a further decline in δ13Corg

    Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: Implications for paleotemperature and paleoenvironmental reconstructions

    Get PDF
    Alkenones are C35-C42 polyunsaturated ketone lipids that are commonly employed to reconstruct changes in sea surface temperature. However, their use in coastal seas and saline lakes can be hindered by species-mixing effects. We recently hypothesized that freshwater lakes are immune to species-mixing effects because they appear to exclusively host Group I haptophyte algae, which produce a distinct distribution of alkenones with a relatively consistent response of alkenone unsaturation to temperature. To evaluate this hypothesis and explore the geographic extent of Group I haptophytes, we analyzed alkenones in sediment and suspended particulate matter samples from lakes distributed throughout the mid- and high latitudes of the Northern Hemisphere (n = 30). Our results indicate that Group I-type alkenone distributions are widespread in freshwater lakes from a range of different climates (mean annual air temperature range: -17.3-10.9 degrees C; mean annual precipitation range: 125-1657 mm yr(-1); latitude range: 40-81 degrees N), and are commonly found in neutral to basic lakes (pH &gt; 7.0), including volcanic lakes and lakes with mafic bedrock. We show that these freshwater lakes do not feature alkenone distributions characteristic of Group II lacustrine haptophytes, providing support for the hypothesis that freshwater lakes are immune to species-mixing effects. In lakes that underwent temporal shifts in salinity, we observed mixed Group I/II alkenone distributions and the alkenone contributions from each group could be quantified with the RIK37 index. Additionally, we observed significant correlations of alkenone unsaturation (U-37(K)) with seasonal and mean annual air temperature with this expanded freshwater lakes dataset, with the strongest correlation occurring during the spring transitional season (U-37(K) = 0.029 * T - 0.49; r(2) = 0.60; p &lt; 0.0001). We present new sediment trap data from two lakes in northern Alaska (Toolik Lake, 68.632 degrees N, 149.602 degrees W; lake E5, 68.643 degrees N, 149.458 degrees W) that demonstrate the highest sedimentary fluxes of alkenones in the spring transitional season, concurrent with the period of lake ice melt and isothermal mixing. Together, these data provide a framework for evaluating lacustrine alkenone distributions and utilizing alkenone unsaturation as a lake temperature proxy. (C) 2018 Elsevier B.V. All rights reserved
    corecore