82 research outputs found

    Prediction of Supernova Rates in Known Galaxy-galaxy Strong-lens Systems

    Full text link
    We propose a new strategy of finding strongly-lensed supernovae (SNe) by monitoring known galaxy-scale strong-lens systems. Strongly lensed SNe are potentially powerful tools for the study of cosmology, galaxy evolution, and stellar populations, but they are extremely rare. By targeting known strongly lensed starforming galaxies, our strategy significantly boosts the detection efficiency for lensed SNe compared to a blind search. As a reference sample, we compile the 128 galaxy-galaxy strong-lens systems from the Sloan Lens ACS Survey (SLACS), the SLACS for the Masses Survey, and the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey. Within this sample, we estimate the rates of strongly-lensed Type Ia SN (SNIa) and core-collapse SN (CCSN) to be 1.23±0.121.23 \pm 0.12 and 10.4±1.110.4 \pm 1.1 events per year, respectively. The lensed SN images are expected to be widely separated with a median separation of 2 arcsec. Assuming a conservative fiducial lensing magnification factor of 5 for the most highly magnified SN image, we forecast that a monitoring program with a single-visit depth of 24.7 mag (5σ\sigma point source, rr band) and a cadence of 5 days can detect 0.49 strongly-lensed SNIa event and 2.1 strongly-lensed CCSN events per year within this sample. Our proposed targeted-search strategy is particularly useful for prompt and efficient identifications and follow-up observations of strongly-lensed SN candidates. It also allows telescopes with small field of views and limited time to efficiently discover strongly-lensed SNe with a pencil-beam scanning strategy.Comment: 14 pages, 5 figures, ApJ in pres

    Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, a delay-dependent approach is developed to deal with the robust stabilization problem for a class of stochastic time-delay interval systems with nonlinear disturbances. The system matrices are assumed to be uncertain within given intervals, the time delays appear in both the system states and the nonlinear disturbances, and the stochastic perturbation is in the form of a Brownian motion. The purpose of the addressed stochastic stabilization problem is to design a memoryless state feedback controller such that, for all admissible interval uncertainties and nonlinear disturbances, the closed-loop system is asymptotically stable in the mean square, where the stability criteria are dependent on the length of the time delay and therefore less conservative. By using Itô's differential formula and the Lyapunov stability theory, sufficient conditions are first derived for ensuring the stability of the stochastic interval delay systems. Then, the controller gain is characterized in terms of the solution to a delay-dependent linear matrix inequality (LMI), which can be easily solved by using available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed design procedure.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    ACQ: Improving Generative Data-free Quantization Via Attention Correction

    Full text link
    Data-free quantization aims to achieve model quantization without accessing any authentic sample. It is significant in an application-oriented context involving data privacy. Converting noise vectors into synthetic samples through a generator is a popular data-free quantization method, which is called generative data-free quantization. However, there is a difference in attention between synthetic samples and authentic samples. This is always ignored and restricts the quantization performance. First, since synthetic samples of the same class are prone to have homogenous attention, the quantized network can only learn limited modes of attention. Second, synthetic samples in eval mode and training mode exhibit different attention. Hence, the batch-normalization statistics matching tends to be inaccurate. ACQ is proposed in this paper to fix the attention of synthetic samples. An attention center position-condition generator is established regarding the homogenization of intra-class attention. Restricted by the attention center matching loss, the attention center position is treated as the generator's condition input to guide synthetic samples in obtaining diverse attention. Moreover, we design adversarial loss of paired synthetic samples under the same condition to prevent the generator from paying overmuch attention to the condition, which may result in mode collapse. To improve the attention similarity of synthetic samples in different network modes, we introduce a consistency penalty to guarantee accurate BN statistics matching. The experimental results demonstrate that ACQ effectively improves the attention problems of synthetic samples. Under various training settings, ACQ achieves the best quantization performance. For the 4-bit quantization of Resnet18 and Resnet50, ACQ reaches 67.55% and 72.23% accuracy, respectively

    Advances in PNP-ligated rare-earth-metal complexes: Reactivity and catalytic performances

    Get PDF
    Due to the large ionic radius and high electro-positivity nature, rare earth metal complexes are difficult to stabilize and undergo pathways like ligand redistribution and intramolecular C-H activation. To solve such problems and retain reactive versatility, rare earth complexes supported by a variety of tridentate PNP pincer ligands have been explored. Such complexes can serve as perfect precursors for preparing ultra-active rare earth species containing two metal-carbon bands, let alone Ln=N and Ln=P multiple bonds. In addition, the combined stability and activity of the cation rare earth mediates made them the best catalysts for the polymerization of olefins and other non-polar hydrocarbon monomers, especially conjugated dienes. The practical utilization of rare earth metal catalysts for new materials production have also extensively explored by experts from the academic and industries

    1,4-bis(2,2-diphenylethenyl)benzene as an efficient emitting material for organic light emitting diodes

    No full text
    We report on the photophysical properties of 1,4-bis(2,2-diphenylethenyl)benzene (PEB) in a solution and a solid state. A poor blue photoluminescence efficiency of PEB in a solution dramatically increases in the deposited film. We explain such properties in terms of molecular dynamics and degrees of intramolecular freedom in various molecular environments. PEB as an electron-transport and emitting layer in organic light-emitting diodes (OLEDs) shows bright blue-green electroluminescence (EL) with the peak wavelength at λmax ~ 495 nm. The maximum external EL quantum efficiency of ηEL = 2.5 % and maximum luminance of 41600 cd/m2 in the optimized device were obtained, indicating that PEB possesses superior electron-transport ability

    Homozygous mutation in DNAAF4 causes primary ciliary dyskinesia in a Chinese family

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder that affects the structure and function of motile cilia, leading to classic clinical phenotypes, such as situs inversus, chronic sinusitis, bronchiectasis, repeated pneumonia and infertility. In this study, we diagnosed a female patient with PCD who was born in a consanguineous family through classic clinical manifestations, transmission electron microscopy and immunofluorescence staining. A novel DNAAF4 variant NM_130810: c.1118G>A (p. G373E) was filtered through Whole-exome sequencing. Subsequently, we explored the effect of the mutation on DNAAF4 protein from three aspects: protein expression, stability and interaction with downstream DNAAF2 protein through a series of experiments, such as transfection of plasmids and Co-immunoprecipitation. Finally, we confirmed that the mutation of DNAAF4 lead to PCD by reducing the stability of DNAAF4 protein, but the expression and function of DNAAF4 protein were not affected

    Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat (Triticum aestivum L.)

    Get PDF
    The TCP family genes are plant-specific transcription factors and play important roles in plant development. TCPs have been evolutionarily and functionally studied in several plants. Although common wheat (Triticum aestivum L.) is a major staple crop worldwide, no systematic analysis of TCPs in this important crop has been conducted. Here, we performed a genome-wide survey in wheat and found 66 TCP genes that belonged to 22 homoeologous groups. We then mapped these genes on wheat chromosomes and found that several TCP genes were duplicated in wheat including the ortholog of the maize TEOSINTE BRANCHED 1. Expression study using both RT-PCR and in situ hybridization assay showed that most wheat TCP genes were expressed throughout development of young spike and immature seed. Cis-acting element survey along promoter regions suggests that subfunctionalization may have occurred for homoeologous genes. Moreover, protein–protein interaction experiments of three TCP proteins showed that they can form either homodimers or heterodimers. Finally, we characterized two TaTCP9 mutants from tetraploid wheat. Each of these two mutant lines contained a premature stop codon in the A subgenome homoeolog that was dominantly expressed over the B subgenome homoeolog. We observed that mutation caused increased spike and grain lengths. Together, our analysis of the wheat TCP gene family provides a start point for further functional study of these important transcription factors in wheat

    PAR6, A Potential Marker for the Germ Cells Selected to Form Primordial Follicles in Mouse Ovary

    Get PDF
    Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, PAR6 appeared in somatic cell cytoplasm and fell weak when somatic cells invaded germ cell cysts at 17.5 days post coitus (dpc). Meanwhile, the expression of PAR6 was observed in cysts, and became strong in the nuclei of some germ cells at 19.5 dpc and all primordial follicular oocytes at 3 day post parturition (dpp), and then obviously declined when the primordial follicles entered the folliculogenic growth phase. During the primordial follicle pool foundation, the number of PAR6 positive germ cells remained steady and was consistent with that of formed follicles at 3 dpp. There were no TUNEL (apoptosis examination) positive germ cells stained with PAR6 at any time studied. The number of follicles significantly declined when 15.5 dpc ovaries were treated with the anti-PAR6 antibody and PAR6 RNA interference. Carbenoxolone (CBX, a known blocker of gap junctions) inhibited the expression of PAR6 in germ cells and the formation of follicles. Our results suggest that PAR6 could be used as a potential marker of germ cells for the primordial follicle formation, and the expression of PAR6 by a gap junction-dependent process may contribute to the formation of primordial follicles and the maintenance of oocytes at the diplotene stage
    corecore