62 research outputs found

    Changes in microRNA expression profiles in HIV-1-transfected human cells

    Get PDF
    MicroRNAs (miRNAs) are small RNAs of 18–25 nucleotides (nt) in length that play important roles in regulating a variety of biological processes. Recent studies suggest that cellular miRNAs may serve to control the replication of viruses in cells. If such is the case, viruses might be expected to evolve the ability to modulate the expression of cellular miRNAs. To ask if expression of HIV-1 genes changes the miRNA profiles in human cells, we employed a high throughput microarray method, termed the RNA-primed Array-based Klenow Enzyme (RAKE) assay. Here, we describe the optimization of this assay to quantify the expression of miRNAs in HIV-1 transfected human cells. We report distinct differences in miRNA profiles in mock-transfected HeLa cells versus HeLa cells transfected with an infectious HIV-1 molecular clone, pNL4-3

    Solving the Caputo Fractional Reaction-Diffusion Equation on GPU

    Get PDF

    A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation

    Get PDF
    The computational complexity of one-dimensional time fractional reaction-diffusion equation is O(N2M) compared with O(NM) for classical integer reaction-diffusion equation. Parallel computing is used to overcome this challenge. Domain decomposition method (DDM) embodies large potential for parallelization of the numerical solution for fractional equations and serves as a basis for distributed, parallel computations. A domain decomposition algorithm for time fractional reaction-diffusion equation with implicit finite difference method is proposed. The domain decomposition algorithm keeps the same parallelism but needs much fewer iterations, compared with Jacobi iteration in each time step. Numerical experiments are used to verify the efficiency of the obtained algorithm

    Action Real-Time Strategy Gaming Experience Related to Enhanced Capacity of Visual Working Memory

    Get PDF
    Action real-time strategy gaming (ARSG)—a major genre of action video gaming (AVG)—has both action and strategy elements. ARSG requires attention, visual working memory (VWM), sensorimotor skills, team cooperation, and strategy-making abilities, thus offering promising insights into the learning-induced plasticity. However, it is yet unknown whether the ARSG experience is related to the development of VWM capacity. Using both behavioral and event-related potential (ERP) measurements, this study tested whether ARSG experts had larger VWM capacity than non-experts in a change detection task. The behavioral results showed that ARSG experts had higher accuracy and larger VWM capacity than non-experts. In addition, the ERP results revealed that the difference wave of the contralateral delay activity (CDA) component (size 4–size 2) elicited by experts was significantly larger than that of non-experts, suggesting that the VWM capacity was higher in experts than in non-experts. Thus, the findings suggested that prolonged ARSG experience is correlative with the enhancement of VWM

    Study on the influence of ion doping on the crystal structure and magnetic properties of YFeO3

    No full text
    A series of pure phase YFeO _3 sample powders doped with Eu ^3+ and Nd ^3+ were synthesized by sol-gel method. The influence of different ions doping on the crystal structure and magnetic properties of YFeO _3 were investigated. The prepared sample powders were characterized by powder x-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, Fourier transform infrared spectrometer, differential thermal analyzer and vibrating sample magnetometer. The results demonstrate that all sample powders are pure phase orthogonal perovskite structures, the crystal structure and the magnetization have changed. The lattice parameters and the saturation magnetization increases with the increase of ion radius or ion concentration in single doping system. In the case of double doping, the influence of the crystal structure and magnetic properties of YFeO _3 is more complicated than that of single doping according to the change of ions concentration

    Computational Challenge of Fractional Differential Equations and the Potential Solutions: A Survey

    No full text
    We present a survey of fractional differential equations and in particular of the computational cost for their numerical solutions from the view of computer science. The computational complexities of time fractional, space fractional, and space-time fractional equations are O(N2M), O(NM2), and O(NM(M + N)) compared with O(MN) for the classical partial differential equations with finite difference methods, where M, N are the number of space grid points and time steps. The potential solutions for this challenge include, but are not limited to, parallel computing, memory access optimization (fractional precomputing operator), short memory principle, fast Fourier transform (FFT) based solutions, alternating direction implicit method, multigrid method, and preconditioner technology. The relationships of these solutions for both space fractional derivative and time fractional derivative are discussed. The authors pointed out that the technologies of parallel computing should be regarded as a basic method to overcome this challenge, and some attention should be paid to the fractional killer applications, high performance iteration methods, high order schemes, and Monte Carlo methods. Since the computation of fractional equations with high dimension and variable order is even heavier, the researchers from the area of mathematics and computer science have opportunity to invent cornerstones in the area of fractional calculus
    • …
    corecore