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The computational complexity of one-dimensional time fractional reaction-diffusion equation is𝑂(𝑁2𝑀) compared with𝑂(𝑁𝑀)

for classical integer reaction-diffusion equation. Parallel computing is used to overcome this challenge. Domain decomposition
method (DDM) embodies large potential for parallelization of the numerical solution for fractional equations and serves as a basis
for distributed, parallel computations. A domain decomposition algorithm for time fractional reaction-diffusion equation with
implicit finite difference method is proposed. The domain decomposition algorithm keeps the same parallelism but needs much
fewer iterations, compared with Jacobi iteration in each time step. Numerical experiments are used to verify the efficiency of the
obtained algorithm.

1. Introduction

Fractional equations can be used to describe some physi-
cal phenomenon more accurately than the classical integer
order differential equation. The reaction-diffusion equations
play an important role in dynamical systems of mathemat-
ics, physics, chemistry, bioinformatics, finance, and other
research areas. There has been a wide variety of analytical
and numericalmethods proposed for fractional equations [1–
7], for example, finite difference method [8], finite element
method [9], Adomian decompositionmethod [10], and spec-
tral technique [11]. Interest in fractional reaction-diffusion
equations has increased [12].

Domain decomposition methods (DDM) solve a bound-
ary value problem by splitting it into smaller boundary
value problems on subdomains and iterating it to coordinate
the solution between adjacent subdomains [13]. A coarse
problem with one or few unknowns per subdomain is used
to further coordinate the solution between the subdomains
globally. The DDM can be divided into two categories: the

overlapping and nonoverlapping [14]. Chan and Mathew
[15] gave a survey on iterative domain decomposition tech-
niques that had been developed for solving several kinds
of partial differential equations, including elliptic, parabolic,
and differential systems such as the Stokes problem and
mixed formulations of elliptic problems.The problems on the
subdomains are almost independent, which makes domain
decomposition methods suitable for parallel computing.
Parallel computing is used to solve intensive computation
applications simultaneously [16], such as particle transport
[17, 18] and fast multipole methods [19]. It is time consuming
to numerically solve fractional differential equations for long
time tail. Parallel computing [20–22] can be used to overcome
the computational challenge of fractional approximation.
DDM will embody large potential for a parallelization of
the numerical solution for fractional equations. Until today
the power of DDM for approximating fractional derivatives
and solving fractional differential equations has not been
recognized.
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This paper focuses on the Caputo fractional reaction-
diffusion equation:

𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝜇𝑢 (𝑥, 𝑡)

=
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝐾𝑓 (𝑥, 𝑡) , (0 < 𝛼 < 1) ,

𝑢 (𝑥, 0) = 𝑔 (𝑥) , 𝑥 ∈ [0, 𝑥
𝑅
] ,

𝑢 (0, 𝑡) = 𝑢 (𝑥
𝑅
, 𝑡) = 0, 𝑡 ∈ [0, 𝑇]

(1)

on a finite domain 0 ≤ 𝑥 ≤ 𝑥
𝑅
and 0 ≤ 𝑡 ≤ 𝑇. The 𝜇 > 0

and𝐾 are constants. If 𝛼 equals 1, (1) is the classical reaction-
diffusion equation. The fractional derivative is in the Caputo
form.

2. Background

2.1. Numerical Solution. The fractional derivative of 𝑓(𝑡) in
the Caputo sense is defined as [23]

𝐶

0
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

0

𝑓
󸀠
(𝜉)

(𝑡 − 𝜉)
𝛼
𝑑𝜉, (0 < 𝛼 < 1) . (2)

If 𝑓󸀠(𝑡) is continuous bounded derivatives in [0, 𝑇] for
every 𝑇 > 𝑎, we can get

0
𝐷
𝛼𝑓(𝑡)

𝑡
= lim
𝜉→0,𝑛𝜉=𝑡

𝜉
𝛼

𝑛

∑

𝑖=0

(−1)
𝑖
(
𝛼

𝑖
)

=
𝑓 (0) 𝑡

−𝛼

Γ (1 − 𝛼)
+

1

Γ (1 − 𝛼)
∫

𝑡

0

𝑓
󸀠
(𝜉)

(𝑡 − 𝜉)
𝛼
𝑑𝜉.

(3)

Define 𝜏 = 𝑇/𝑁, ℎ = 𝑥
𝑅
/(𝑀+1), 𝑡

𝑛
= 𝑛𝜏, and 𝑥

𝑖
= 0+ 𝑖ℎ

for 0 ≤ 𝑛 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑀 + 1. Define 𝑢𝑛
𝑖
, 𝑓𝑛
𝑖
, and 𝑔

𝑖
as the

numerical approximation to 𝑢(𝑥
𝑖
, 𝑡
𝑛
),𝑓(𝑥

𝑖
, 𝑡
𝑛
), and 𝑔(𝑥

𝑖
). We

can get [12]

𝐶

0
𝐷
𝛼

𝑡
𝑢(𝑥, 𝑡)|

𝑡
𝑛

𝑥
𝑖

=
1

𝜏Γ (1 − 𝛼)

× [𝑏
0
𝑢
𝑛

𝑖
−

𝑛−1

∑

𝑘=1

(𝑏
𝑛−𝑘−1

− 𝑏
𝑛−𝑘

) 𝑢
𝑘

𝑖
− 𝑏
𝑛−1

𝑢
0

𝑖
]

+ ⃝ (𝜏
2−𝛼

) ,

(4)

where 1 ≤ 𝑖 ≤ 𝑀, 𝑛 ≥ 1, and

𝑏
𝑙
=

𝜏
1−𝛼

1 − 𝛼
[(𝑙 + 1)

1−𝛼
− 𝑙
1−𝛼

] , 𝑙 ≥ 0. (5)

By using center difference scheme for 𝜕2𝑢(𝑥, 𝑡)/𝜕𝑥2, we
can get

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝑛

𝑥
𝑖

=
1

ℎ2
(𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖−1
) + ⃝ (ℎ

2
) . (6)

The implicit finite difference approximation for (1) is

1

𝜏Γ (1 − 𝛼)
[𝑏
0
𝑢
𝑛

𝑖
−

𝑛−1

∑

𝑘=1

(𝑏
𝑛−𝑘−1

− 𝑏
𝑛−𝑘

) 𝑢
𝑘

𝑖
− 𝑏
𝑛−1

𝑢
0

𝑖
] + 𝜇𝑢

𝑛

𝑖

=
𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖−1

ℎ2
+ 𝐾𝑓
𝑛

𝑖
.

(7)

Define 𝑠 = 2/ℎ
2
+ 𝑏
0
𝜏
−1
/Γ(1 − 𝛼) + 𝜇, 𝑈

𝑛
=

(𝑢
𝑛

1
, 𝑢
𝑛

2
, . . . , 𝑢

𝑛

𝑀
)
𝑇, 𝐹𝑛 = (𝑓

𝑛

1
, 𝑓
𝑛

2
, . . . , 𝑓

𝑛

𝑀
)
𝑇, and 𝑟

𝑙
as

𝑟
𝑙
=
𝑏
𝑙
− 𝑏
𝑙+1

𝑠
. (8)

Equation (7) evolves as

𝐴𝑈
𝑛
=

𝑛−1

∑

𝑘=1

𝑟
𝑛−1−𝑘

𝑈
𝑘
+ 𝑏
𝑛−1

𝑈
0
+ 𝐾𝐹
𝑛
, (9)

where matrix 𝐴 is a tridiagonal matrix, defined by

𝐴
𝑀×𝑀

=

(
(
(
(
(

(

𝑠 −
1

ℎ2

−
1

ℎ2
𝑠 −

1

ℎ2

⋅ ⋅ ⋅

⋅ ⋅ −
1

ℎ2

−
1

ℎ2
𝑠

)
)
)
)
)

)

. (10)

Because 𝜇 > 0, 𝑏
0
> 0, the elements of matrix 𝐴 satisfy

|𝑠| > | − 1/ℎ
2
| + | − 1/ℎ

2
|. This means that matrix 𝐴 is strictly

diagonally dominant.

2.2. Computational Challenge. In order to get 𝑈𝑛, the right-
sided computation of (9) should be performed and tridi-
agonal linear system should be solved. There are mainly
many constant vectormultiplications andmany vector vector
additions in the right-sided computation.

(1) The constant vector multiplications are 𝑉󸀠 = 𝑏
𝑛−1

𝑈
0,

𝑉
𝑘
= 𝑟
𝑛−1−𝑘

𝑈
𝑘, and 𝑉󸀠󸀠 = 𝐾𝐹

𝑛.
(2) The vector vector additions are𝑉 = 𝑉

󸀠
+∑
𝑛−1

𝑘=1
𝑉
𝑘
+𝑉
󸀠󸀠.

(3) After solving tridiagonal linear system 𝐴𝑈
𝑛+1

= 𝑉,
we get 𝑈𝑛+1.

The Thomas algorithm for tridiagonal systems needs
5𝑀 multiplications and 3𝑀 additions. The computational
complexity of 𝐴𝑈𝑛 = 𝑉 is 𝑂(𝑀). The total computation of
(9) is determined by ∑𝑛−1

𝑘=1
𝑟
𝑛−1−𝑘

𝑈
𝑘, which means (𝑛 − 1)𝑀

multiplications and (𝑛 − 2)𝑀 additions for each time step;
𝑁

∑

𝑛=1

(2𝑛𝑀 − 3𝑀) = 𝑂 (𝑁
2
𝑀) . (11)

The computational complexity of (1) is 𝑂(𝑁
2
𝑀), while

the computational complexity of classical one-dimensional
reaction-diffusion equation is only 𝑂(𝑁𝑀). The computa-
tional cost of (11) varies linearly along the number of grid
points but squares with the number of time steps.
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3. Domain Decomposition Method

3.1. DDM with Two Subdomains. Similar to the classical
alternating Schwarz method [13, 24], the domain Ω =

[0, 𝑥
𝑅
] = 𝑝
0
, 𝑝
1
, . . . , 𝑝

𝑀
can be divided into two subdomains

Ω
𝑎
and Ω

𝑏
. There are 𝑀 + 1 grid points for Ω. Ω

𝑎
=

{𝑝
0
, 𝑝
1
, . . . , 𝑝

𝑚
, 𝑝
𝑚+1

} and Ω
𝑏
= {𝑝
𝑚
, 𝑝
𝑚+1

, . . . , 𝑝
𝑀
}, where

0 < 𝑚 < 𝑀. The global physical boundary is defined in (1).
𝜕Ω
𝑎
(the right boundary of Ω

𝑎
) and 𝜕Ω

𝑏
(the left boundary

ofΩ
𝑏
) are called artificial internal boundary.

In order to approximate the time fractional equation
on the two subdomains separately, the following iterative
procedure can be performed. For each time step, the right
hand side of (9) is calculated at first and the 𝑈𝑛

Ω
𝑖

is given as
initial guess 𝑈𝑛−1

Ω
𝑖

, where 𝑖 = 𝑎, 𝑏. The better approximation
of 𝑈𝑛
Ωi

can be obtained iteratively. During each iteration,
which is inside of a time step, the time fractional equation is
solved in the subdomain Ω

𝑎
, using the approximation of the

previous iteration fromΩ
𝑏
on 𝜕Ω

𝑎
as follows:

𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝜇𝑢 (𝑥, 𝑡)

=
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝐾𝑓 (𝑥, 𝑡) , (0 < 𝛼 < 1) ,

𝑢 (𝑥, 0) = 𝑔 (𝑥) , 𝑥 ∈ [0, 𝑥
𝑅
] ,

𝑢 (𝑥, 0) = 𝑢
𝑛

𝑏,𝑚+1, previous, 𝑥 on 𝜕Ω
𝑎
,

𝑢 (0, 𝑡
𝑛
) = 0,

(12)

where 𝑢𝑛
𝑏,𝑚+1, previous stands for the previous solution of grid

point 𝑝
𝑚+1

in subdomain Ω
𝑏
. The better approximation

𝑈
𝑛

𝑎, new is obtained.𝑈
𝑛

𝑎, new is defined as {𝑢
𝑛

𝑎, 1, new, . . . , 𝑢
𝑛

𝑎,𝑚, new}.
𝑈
𝑛

𝑎, previous is defined as {𝑢
𝑛

𝑎, 1, previous, . . . , 𝑢
𝑛

𝑎,𝑚, previous}. The
definitions for 𝑈𝑛

𝑏, previous and 𝑈
𝑛

𝑎, new are similar.
Then, we solve the time fractional equation within the

subdomain of Ω
𝑏
, using the approximation of the previous

iteration fromΩ
𝑎
on 𝜕Ω

𝑏
as follows:

𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝜇𝑢 (𝑥, 𝑡)

=
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝐾𝑓 (𝑥, 𝑡) , (0 < 𝛼 < 1) ,

𝑢 (𝑥, 0) = 𝑔 (x) , 𝑥 = 𝑥
𝑅

𝑢 (𝑥, 0) = 𝑢
𝑛

𝑎,𝑚, previous, 𝑥 on 𝜕Ω
𝑏

𝑢 (𝑥
𝑅
, 𝑡
𝑛
) = 0,

(13)

where 𝑢
𝑛

𝑎,𝑚, previous stands for the previous solution of grid
point 𝑝

𝑚
in subdomainΩ

𝑎
.

The two local time fractional equations in Ω
𝑎
and Ω

𝑏

are connected by the artificial boundary condition. The
artificial boundary condition on the internal boundary 𝜕Ω

𝑎

of subdomain Ω
𝑎
is provided by 𝑢

𝑛

𝑏,𝑚+1, previous from sub-
domain Ω

𝑏
, and vice versa. The approximation 𝑢

𝑛

𝑎,𝑚, previous
and 𝑢

𝑛

𝑏,𝑚+1, previous may change until converged to the true
solution. So, in an inner iteration of each time step, the two

time fractional equations need to exchange two sets of data
(send one and receive one) to update the artificial boundary
conditions.

3.2. A Domain Decomposition Algorithm. Section 3.1 shows
the procedure of DDM for time fractional equation with
two subdomains. It is not hard to extend the method of
Section 3.1 to more than two subdomains. The domain Ω

can be decomposed into a set of 𝑃 subdomains {Ω
𝑝
}
𝑃

𝑝=1
with

Ω = ∪
𝑃

𝑝=1
Ω
𝑝
. For time step 𝑛, Ω

1
has one global boundary

𝑥 = 0 and one artificial inner boundary 𝜕Ω
1,𝑏
. Ω
𝑃
has one

global boundary 𝑥 = 𝑥
𝑅
and one artificial inner boundary

𝜕Ω
𝑃,𝑎
.TheΩ

𝑝
(1 < 𝑝 < 𝑃) has two artificial inner boundaries

𝜕Ω
𝑃,𝑎

and 𝜕Ω
𝑝,𝑏
. Ω
𝑝
∩ Ω
𝑝+1

̸= Φmeans that the neighboring
subdomains have explicit overlap.

The iterative procedure for the time step 𝑛 + 1 is similar
to Section 3.1. The current iteration of Ω

𝑝
uses the data of

previous iteration of its neighboring subdomains. Assuming
𝑀 is divisible with 𝑃, the domain decomposition algorithm
is shown in Algorithm 1.

In Algorithm 1, there are some fast algorithms to solve
the tridiagonal matrix 𝐴

1→𝐼, 3, 𝑝
𝑉
3

1→𝐼, 𝑝
= 𝑉
2

1→𝐼, 𝑝
, such

as Thomas algorithm. 𝜖 is a threshold, such as 10
−6. The

signal 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is used to count how many iterations
are needed in each time step. The data exchange between
neighboring iterations is shown in lines 19–22. From the
view of computer science, lines 2–6, lines 7–30, and lines
31-32 are preprocessing procedure, numerical solver, and
postprocessing procedure.

3.3. Analysis. The presented DD algorithm updates the arti-
ficial boundary condition in a Jacobi fashion, using approx-
imation from all the relevant neighboring subdomains from
the previous iteration for each time step. A subdomain only
exchanges two sets of data for one artificial boundary with
its neighbor.Therefore, the subdomain solved in Algorithm 1
can be carried out almost completely independently, thus
making the method inherently as parallel as the Jacobi
iteration. The DD algorithm keeps the good parallelism of
Jacobi iteration but needs fewer inner iterations in each
time step; see Section 4. Equation (9) can be regarded as
approximation of a special integer order reaction-diffusion
equation. The stability and convergence analysis of integer
order reaction-diffusion equation can refer toMathew’s book
[25].

4. Numerical Example

The following Caputo fractional reaction-diffusion equation
[12] was considered, as shown in (14):

𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝜇𝑢 (𝑥, 𝑡)

=
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝐾𝑓 (𝑥, 𝑡) , (0 < 𝛼 < 1) ,
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(1) [ℎ!] input:𝑀,𝑃, 𝑥
𝑅
, 𝑇, 𝜇, 𝐾, 𝜖 et al.

Output:𝑈
(2) 𝐼 ← 𝑀/𝑃

(3) Allocate memory space 𝑈𝑁
𝐼,𝑃
, 𝐴
𝐼,3,𝑃

, 𝐹
𝑁

𝐼,𝑃
, 𝑉
3

𝐼,𝑃
et al.

(4) Init matrices 𝑈,𝐴, 𝐹, 𝑏, 𝑟 et al.
(5) Declare local variables 𝛿

𝑃
, 𝛿

(6) 𝑉1→3
1→𝐼,1→𝑃

← 0

(7) Get 𝑈0
1→𝐼,1→𝑃

with initial boundary.
(8) 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0

(9) for 𝑛 = 0 to 𝑁 − 1 step by 1 do
(10) for𝑝 = 1 to 𝑃 step by 1 do
(11) 𝑈

𝑛+1

1→𝐼,𝑝
← 𝑏
𝑛
𝑈
0

1→𝐼,𝑝
+ 𝐾𝐹

𝑛+1

1→𝐼,𝑝

(12) for 𝑘 = 1 to 𝑛 step by 1 do
(13) 𝑈

𝑛+1

1→𝐼,𝑝
← 𝑈
𝑛

1→𝐼,𝑝
+ 𝑈
𝑘

1→𝐼,𝑝
𝑟
𝑛−𝑘

(14) 𝛿 ← 1.0

(15) 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0

(16) while 𝛿 > 𝜖 do
(17) for𝑝 = 1 to 𝑃 step by 1 do
(18) 𝑉

2

1→𝐼,𝑝
← 𝑈
𝑛+1

1→𝐼,𝑝

(19) if 𝑝 > 1 then
(20) 𝑉

2

1,𝑝
← 𝑉
2

1,𝑝
+ 𝑉
1

𝐼,𝑝−1
/ℎ
2

(21) if 𝑝 < 𝑃 then
(22) 𝑉

2

𝐼,𝑝
← 𝑉
2

𝐼,𝑝
+ 𝑉
1

𝐼,𝑝+1
/ℎ
2

(23) for𝑝 = 1 to 𝑃 step by 1 do
(24) solve 𝐴

1→𝐼,3,𝑝
𝑉
3

1→𝐼,𝑝
= 𝑉
2

1→𝐼,𝑝

(25) 𝛿
𝑝
= max {󵄨󵄨󵄨󵄨󵄨𝑉

1

𝑖,𝑝
− 𝑉
3

𝑖,𝑝

󵄨󵄨󵄨󵄨󵄨

𝐼

𝑖=1
}

(26) 𝛿 = max {𝛿, 𝛿
𝑝
}

(27) 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1

(28) 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑐𝑜𝑢𝑛𝑡

(29) for𝑝 = 1 to𝑃 step by 1 do
(30) 𝑈

𝑛+1

1→𝐼,𝑝
← 𝑉
3

1→𝐼,𝑝

(31) Output the information
(32) Free memory space

Algorithm 1: Domain decomposition algorithm for time fractional reaction-diffusion equation.

𝑢 (𝑥, 0) = 0, 𝑥 ∈ (0, 2) ,

𝑢 (0, 𝑡) = 𝑢 (2, 𝑡) = 0

(14)

with 𝜇 = 1, 𝐾 = 1, and

𝑓 (𝑥, 𝑡) =
2

Γ (2.3)
𝑥 (2 − 𝑥) 𝑡

1.3
+ 𝑥 (2 − 𝑥) 𝑡

2
+ 2𝑡
2
. (15)

The exact solution of (14) is

𝑢 (𝑥, 𝑡) = 𝑥 (2 − 𝑥) 𝑡
2
. (16)

With 𝜖 = 10
−6, 𝑇 = 1.0, 𝑥

𝑅
= 2.0, and 𝑃 = 3,

the comparison between exact solution and the presented
DD algorithm is shown in Table 1. We can find that the DD
algorithm compares well with the exact solution.

We can replace the DDM (lines 16–27 of Algorithm 1)
with Jacobi method. The Jacobi method for a time step has
the same parallelism with the DD algorithm. But the Jacobi
method needs more iterations. With 𝜖 = 10

−6 and 𝑃 = 3,

Table 1: Comparing exact solution and DD algorithm.

ℎ 𝜏 Δ

2/10 1/10 8.36 × 10
−3

2/10 1/20 3.44 × 10
−3

2/61 1/61 7.84 × 10
−4

2/61 1/100 4.02 × 10
−4

2/100 1/300 6.10 × 10
−5

Table 2: Comparing Jacobi method and DDM.

ℎ 𝜏 Jacobi method DDM
2/10 1/10 741 250
2/10 1/20 1147 378
2/61 1/61 52423 3155
2/61 1/100 67164 4138
2/100 1/300 276243 11373

the comparison between Jacobi method and the presented
DD algorithm is shown in Table 2. The sum of “count” (total
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iterations) for all time steps is recorded. We can see that the
DDM needs much less iterations than Jacobi method.

As a part of the future work, we would like to implement
an efficient DDM for time fractional equations on parallel
computer systems, for example, Tianhe-1A supercomputer
[26].
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