166 research outputs found

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the p→K++Μˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Volatility-Managed Portfolio: Does It Really Work?

    No full text

    An Actinide Metallacyclopropene Complex: Synthesis, Structure, Reactivity, and Computational Studies

    No full text
    International audienceThe synthesis, structure, and reactivity of an actinide metallacyclopropene were comprehensively studied. The reduction of [η5-1,2,4-(Me3C)3C5H2]2ThCl2 (1) with potassium graphite (KC8) in the presence of diphenylacetylene (PhC≡CPh) yields the first stable actinide metallacyclopropene [η5-1,2,4-(Me3C)3C5H2]2Th(η2-C2Ph2) (2). The magnetic susceptibility data show that 2 is indeed a diamagnetic Th(IV) complex, and density functional theory (DFT) studies suggest that the 5f orbitals contribute to the bonding of the metallacyclopropene Th—(η2-C═C) moiety. Complex 2 shows no reactivity toward alkynes, but it reacts with a variety of heterounsaturated molecules such as aldehyde, ketone, carbodiimide, nitrile, organic azide, and diazoalkane derivatives. DFT studies complement the experimental observations and provide additional insights. Furthermore, a comparison between Th and group 4 metals reveals that Th4+ shows unique reactivity patterns

    Assessing the potential for CO2 storage in shallow coal seams using gas geochemistry: a case study from Qinshui Basin, north China

    No full text
    Shallow coal seams are a target reservoir for CO2 sequestration. So far efforts to trace CO2 sequestration by coal beds have largely focussed on short-term monitoring or theoretical modelling. To evaluate the feasibility of safe long-term storage of CO2 in shallow coal beds, we report the first systematic gas geochemical study at a shallow injection site in Shizhuang, Qinshui Basin, one year after CO2 injection ceased. The injected CO2 is isotopically distinctive and appears to be enriched in heavy noble gases (Kr and Xe). The high CO2 content and light ÎŽ13CCO2 of gases from production wells confirm the migration of injected gas to the northeast and east of the main injection well previously tracked by geophysical studies. The migration of injected gas to the southeast has not been identified before, and exceeds that to the northeast, implying that gas geochemistry provides a more robust method of tracking migration. Less than 1 % of the total injected CO2 has been extracted from production wells in the year since injection ceased. We estimate that the target coal seam in the study area can store about 0.08 billion tonnes of CO2. Scaling up we estimate that the Qinshui Basin has the potential to store about 19 billion tonnes of CO2. This is significantly more than previous estimates. This study demonstrates the importance of geochemical tracers in quantifying and monitoring CO2 sequestration and also implies that unmined coal seams have high potential for the long-term storage of CO2
    • 

    corecore