1,963 research outputs found

    The peculiar filamentary HI structure of NGC 6145

    Full text link
    In this paper, we report the peculiar HI morphology of the cluster spiral galaxy NGC 6145, which has a 150 kpc HI filament on one side that is nearly parallel to its major axis. This filament is made up of several HI clouds and the diffuse HI gas between them, with no optical counterparts. We compare its HI distribution with other one-sided HI distributions in the literature, and find that the overall HI distribution is very different from the typical tidal and ram-pressure stripped HI shape, and its morphology is inconsistent with being a pure accretion event. Only about 30% of the total HI gas is anchored on the stellar disk, while most of HI gas forms the filament in the west. At a projected distance of 122 kpc, we find a massive elliptical companion (NGC 6146) with extended radio emission, whose axis points to an HI gap in NGC 6145. The velocity of the HI filament shows an overall light-of- sight motion of 80 to 180 km/s with respect to NGC 6145. Using the long-slit spectra of NGC 6145 along its major stellar axis, we find that some outer regions show enhanced star formation, while in contrast, almost no star formation activities are found in its center (less than 2 kpc). Pure accretion, tidal or ram-pressure stripping is not likely to produce the observed HI filament. An alternative explanation is the jet-stripping from NGC 6146, although direct evidence for a jet-cold gas interaction has not been found.Comment: 12 pages, 6 figures; Accepted for publication in A

    Why are Orbital Currents Central to High Tc Theory?

    Full text link
    We explain qualitatively why the staggered flux state plays a central role in the SU(2) formulation of the t-J model, which we use to model the pseudogap state in underdoped cuprates. This point of view is supported by studies of projected wavefunctions. In addition to staggered orbital current correlations, we present here for the first time results of correlations involving hole and spin chirality and show that the two are closely related. The staggered flux state allows us to construct cheap and fast vortices, which may hold the key to explaining the many anomalous properties of the normal state.Comment: 7 pages, 3 figures, be published in Solid State Communications as Proceedings of the Williamsburg HTSC Workshop, 200

    CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms

    Get PDF
    How to optimally dispatch orders to vehicles and how to tradeoff between immediate and future returns are fundamental questions for a typical ride-hailing platform. We model ride-hailing as a large-scale parallel ranking problem and study the joint decision-making task of order dispatching and fleet management in online ride-hailing platforms. This task brings unique challenges in the following four aspects. First, to facilitate a huge number of vehicles to act and learn efficiently and robustly, we treat each region cell as an agent and build a multi-agent reinforcement learning framework. Second, to coordinate the agents from different regions to achieve long-term benefits, we leverage the geographical hierarchy of the region grids to perform hierarchical reinforcement learning. Third, to deal with the heterogeneous and variant action space for joint order dispatching and fleet management, we design the action as the ranking weight vector to rank and select the specific order or the fleet management destination in a unified formulation. Fourth, to achieve the multi-scale ride-hailing platform, we conduct the decision-making process in a hierarchical way where a multi-head attention mechanism is utilized to incorporate the impacts of neighbor agents and capture the key agent in each scale. The whole novel framework is named as CoRide. Extensive experiments based on multiple cities real-world data as well as analytic synthetic data demonstrate that CoRide provides superior performance in terms of platform revenue and user experience in the task of city-wide hybrid order dispatching and fleet management over strong baselines.Comment: CIKM 201

    Three dimensional spider-web-like superconducting filamentary paths in KxFe2ySe2K_xFe_{2-y}Se_2 single crystals

    Full text link
    Since the discovery of high temperature superconductivity in F-doped LaFeAsO, many new iron based superconductors with different structures have been fabricated2. The observation of superconductivity at about 32 K in KxFe2-ySe2 with the iso-structure of the FeAs-based 122 superconductors was a surprise and immediately stimulated the interests because the band structure calculation8 predicted the absence of the hole pocket which was supposed to be necessary for the theoretical picture of S+- pairing. Soon later, it was found that the material may separate into the insulating antiferromagnetic K2Fe4Se5 phase and the superconducting phase. It remains unresolved that how these two phases coexist and what is the parent phase for superconductivity. In this study we use different quenching processes to produce the target samples with distinct microstructures, and apply multiple measuring techniques to reveal a close relationship between the microstructures and the global appearance of superconductivity. In addition, we clearly illustrate three dimensional spider-web-like superconducting filamentary paths, and for the first time propose that the superconducting phase may originate from a state with one vacancy in every eight Fe-sites with the root8*root10 parallelogram structure.Comment: 22 pages, 7 figure

    Radiation Tolerance of Fully-Depleted P-Channel CCDs Designed for the SNAP Satellite

    Full text link
    Thick, fully depleted p-channel charge-coupled devices (CCDs) have been developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have several advantages over conventional thin, n-channel CCDs, including enhanced quantum efficiency and reduced fringing at near-infrared wavelengths and improved radiation tolerance. Here we report results from the irradiation of CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron and with 0.1-1 MeV electrons at the LBNL Co60 source. These studies indicate that the LBNL CCDs perform well after irradiation, even in the parameters in which significant degradation is observed in other CCDs: charge transfer efficiency, dark current, and isolated hot pixels. Modeling the radiation exposure over a six-year mission lifetime with no annealing, we expect an increase in dark current of 20 e/pixel/hr, and a degradation of charge transfer efficiency in the parallel direction of 3e-6 and 1e-6 in the serial direction. The dark current is observed to improve with an annealing cycle, while the parallel CTE is relatively unaffected and the serial CTE is somewhat degraded. As expected, the radiation tolerance of the p-channel LBNL CCDs is significantly improved over the conventional n-channel CCDs that are currently employed in space-based telescopes such as the Hubble Space Telescope.Comment: 11 pages, 10 figures, submitted to IEEE Transaction
    corecore