Since the discovery of high temperature superconductivity in F-doped LaFeAsO,
many new iron based superconductors with different structures have been
fabricated2. The observation of superconductivity at about 32 K in KxFe2-ySe2
with the iso-structure of the FeAs-based 122 superconductors was a surprise and
immediately stimulated the interests because the band structure calculation8
predicted the absence of the hole pocket which was supposed to be necessary for
the theoretical picture of S+- pairing. Soon later, it was found that the
material may separate into the insulating antiferromagnetic K2Fe4Se5 phase and
the superconducting phase. It remains unresolved that how these two phases
coexist and what is the parent phase for superconductivity. In this study we
use different quenching processes to produce the target samples with distinct
microstructures, and apply multiple measuring techniques to reveal a close
relationship between the microstructures and the global appearance of
superconductivity. In addition, we clearly illustrate three dimensional
spider-web-like superconducting filamentary paths, and for the first time
propose that the superconducting phase may originate from a state with one
vacancy in every eight Fe-sites with the root8*root10 parallelogram structure.Comment: 22 pages, 7 figure