385 research outputs found

    Cosmological Constraints on the Sign-Changeable Interactions

    Full text link
    Recently, Cai and Su [Phys. Rev. D {\bf 81}, 103514 (2010)] found that the sign of interaction QQ in the dark sector changed in the approximate redshift range of 0.45\,\lsim\, z\,\lsim\, 0.9, by using a model-independent method to deal with the observational data. In fact, this result raises a remarkable problem, since most of the familiar interactions cannot change their signs in the whole cosmic history. Motivated by the work of Cai and Su, we have proposed a new type of interaction in a previous work [H. Wei, Nucl. Phys. B {\bf 845}, 381 (2011)]. The key ingredient is the deceleration parameter qq in the interaction QQ, and hence the interaction QQ can change its sign when our universe changes from deceleration (q>0q>0) to acceleration (q<0q<0). In the present work, we consider the cosmological constraints on this new type of sign-changeable interactions, by using the latest observational data. We find that the cosmological constraints on the model parameters are fairly tight. In particular, the key parameter β\beta can be constrained to a narrow range.Comment: 15 pages, 1 table, 8 figures, revtex4; v2: published versio

    PENENTUAN MASSA FOTOKATALIS DAN SUHU OPTIMUM PADA PROSES FOTODEGRADASI ZAT WARNA RHODAMIN B MENGGUNAKAN FOTOKATALIS TiO2(DETERMINATION OF OPTIMUM TEMPERATURE AND PHOTOCATALYST MASS OF RHODAMINE B PHOTODEGRADATION PROCESS BY TiO2 PHOTOCATALYST)

    Get PDF
    Abstrak Telah dilakukan penelitian tentang penentuan massa fotokatalis dan suhu optimum pada proses fotodegradasi zat warna Rhodamin B menggunakan fotokatalis TiO2. Massa fotokatalis dan suhu optimum pada proses fotodegradasi zat warna Rhodamin B ditentukan dengan variasi massa 0 mg sampai 100 mg dan variasi suhu 30 oC sampai 60 oC. Fotodegradasi dilakukan dalam reaktor tertutup yang dilengkapi dengan lampu UV. Konsentrasi zat warna yang tersisa setelah fotodegradasi diukur dengan spektrofotometer UV-Vis. Kondisi maksimum pengukuran adalah pada panjang gelombang 553,40 nm.  Hasil penelitian menunjukkan bahwa massa fotokatalis optimum pada proses fotodegradasi zat warna Rhodamin B sebesar 70 mg dan suhu optimum pada 50 oC. Kata kunci: massa fotokatalis, suhu larutan, Rhodamin B, TiO2. Abstract The determination of optimum temperature and photocatalyst mass of Rhodamine B photodegradation process was studied using TiO2 as catalyst. Optimum temperature and photocatalyst mass of Rhodamine B photodegradation process was determined by variation of mass 0 mg to 100 mg and variation of temperature at 30 oC to 60 oC. Photodegradation carried out in a closed reactor completed with UV lamp. The remaining of Rhodamine B concentration after photodegradation was measured by UV-Vis spectrophotometer. Maximum condition of measurement was at wavelength of 553,40 nm. The result showed that optimum photocatalyst mass of Rhodamine B photodegradation process was 70 mg and optimum temperature was 50 oC. Key Words: photocatalyst mass, solution’s temperature, Rhodamine B, TiO

    Horava-Lifshitz Dark Energy

    Full text link
    We formulate Horava-Lifshitz cosmology with an additional scalar field that leads to an effective dark energy sector. We find that, due to the inherited features from the gravitational background, Horava-Lifshitz dark energy naturally presents very interesting behaviors, possessing a varying equation-of-state parameter, exhibiting phantom behavior and allowing for a realization of the phantom divide crossing. In addition, Horava-Lifshitz dark energy guarantees for a bounce at small scale factors and it may trigger the turnaround at large scale factors, leading naturally to cyclic cosmology.Comment: 17 pages, no figures, version published at EJP

    Steamed panax notoginseng and its saponins inhibit the migration and induce the apoptosis of neutrophils in a zebrafish tail-fin amputation model

    Get PDF
    Panax notoginseng (PN) is a Chinese medicinal herb that is traditionally used to treat inflammation and immune-related diseases. Its major active constituents are saponins, the types and levels of which can be changed in the process of steaming. These differences in saponins are causally relevant to the differences in the therapeutic efficacies of raw and steamed PN. In this study, we have prepared the extracts of steamed PN (SPNE) with 70% ethanol and investigated their immunomodulatory effect using a zebrafish tail-fin amputation model. A fingerprint-effect relationship analysis was performed to uncover active constituents of SPNE samples related to the inhibitory effect on neutrophil number. The results showed that SPNE significantly inhibited the neutrophil number at the amputation site of zebrafish larvae. And SPNE extracts steamed at higher temperatures and for longer time periods showed a stronger inhibitory effect. Ginsenosides Rh-1, Rk(3), Rh-4, 20(S)-Rg(3), and 20(R)-Rg(3), of which the levels were increased along with the duration of steaming, were found to be the major active constituents contributing to the neutrophil-inhibiting effect of SPNE. By additionally investigating the number of neutrophils in the entire tail of zebrafish larvae and performing TUNEL assays, we found that the decreased number of neutrophils at the amputation site was due to both the inhibition of their migration and apoptosis-inducing effects of the ginsenosides in SPNE on neutrophils. Among them, Rh-1 and 20(R)-Rg(3) did not affect the number of neutrophils at the entire tail, suggesting that they only inhibit the migration of neutrophils. In contrast, ginsenosides Rk(3), Rh-4, 20(S)-Rg(3), and SPNE did not only inhibit the migration of neutrophils but also promoted neutrophilic cell death. In conclusion, this study sheds light on how SPNE, in particular the ginsenosides it contains, plays a role in immune modulation.Animal science

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?

    Full text link
    In this paper we put forward a running coupling scenario for describing the interaction between dark energy and dark matter. The dark sector interaction in our scenario is free of the assumption that the interaction term QQ is proportional to the Hubble expansion rate and the energy densities of dark sectors. We only use a time-variable coupling b(a)b(a) (with aa the scale factor of the universe) to characterize the interaction QQ. We propose a parametrization form for the running coupling b(a)=b0a+be(1a)b(a)=b_0a+b_e(1-a) in which the early-time coupling is given by a constant beb_e, while today the coupling is given by another constant, b0b_0. For investigating the feature of the running coupling, we employ three dark energy models, namely, the cosmological constant model (w=1w=-1), the constant ww model (w=w0w=w_0), and the time-dependent ww model (w(a)=w0+w1(1a)w(a)=w_0+w_1(1-a)). We constrain the models with the current observational data, including the type Ia supernova, the baryon acoustic oscillation, the cosmic microwave background, the Hubble expansion rate, and the X-ray gas mass fraction data. The fitting results indicate that a time-varying vacuum scenario is favored, in which the coupling b(z)b(z) crosses the noninteracting line (b=0b=0) during the cosmological evolution and the sign changes from negative to positive. The crossing of the noninteracting line happens at around z=0.20.3z=0.2-0.3, and the crossing behavior is favored at about 1σ\sigma confidence level. Our work implies that we should pay more attention to the time-varying vacuum model and seriously consider the phenomenological construction of a sign-changeable or oscillatory interaction between dark sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Search for the Lepton Flavor Violation Processes J/ψJ/\psi \to μτ\mu\tau and eτe\tau

    Full text link
    The lepton flavor violation processes J/ψμτJ/\psi \to \mu\tau and eτe\tau are searched for using a sample of 5.8×107\times 10^7 J/ψJ/\psi events collected with the BESII detector. Zero and one candidate events, consistent with the estimated background, are observed in J/ψμτ,τeνˉeντJ/\psi \to \mu\tau, \tau\to e\bar\nu_e\nu_{\tau} and J/ψeτ,τμνˉμντJ/\psi\to e\tau, \tau\to\mu\bar\nu_{\mu}\nu_{\tau} decays, respectively. Upper limits on the branching ratios are determined to be Br(J/ψμτ)<2.0×106Br(J/\psi\to\mu\tau)<2.0 \times 10^{-6} and Br(J/ψeτ)<8.3×106Br(J/\psi \to e\tau) < 8.3 \times10^{-6} at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure
    corecore