764 research outputs found

    Habitat fragmentation causes rapid genetic differentiation and homogenization in natural plant populations – A case study in Leymus chinensis

    Get PDF
    The effects of habitat fragmentations on the forage grass Leymus thinness (Trin.) Tzvel, which has high genetic diversity in northeast China were investigated. Four natural populations of the same ecotype (Grey-green leaf, GGL), namely, BT, ZL, CL and CC (named after location) were collected from different abiotic growing conditions. The CC population has become isolated in a park inside a city by tall buildings though geologically close to CL. Amplified fragment length polymorphism (AFLP) selected primer combinations were highly efficient in revealing the inter-clonal and inter-populational genetic variation in this species. The genetic diversity indices were higher in BT (H = 0.2305) and ZL (0.2467) populations and the lowest in CC (0.1674) population. Cluster analysis showed that the CC population was becoming isolated from the rest with the least gene flow from BT (1.51) as compared from BT to ZL (2.24). Lowest polymorphism was observed in CC (52.31%) as compared to CL (57.69%), BT (70.00%) and ZL (70.38%); this showed a tendency towards homogenization probably due to increased selfing, and due to reduced gene flow apparently caused by city buildings. These results were supported by multiple statistical analyses including Mantel’s test, PCOORDA and AMOVA. Genetic enrichment and epigenetic variation studies can be included in habitat fragmentation analysis and its implications in inducing homogenization and susceptibility in natural plant populations

    Bound state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry

    Full text link
    The energy spectra and the corresponding two- component spinor wavefunctions of the Dirac equation for the Rosen-Morse potential with spin and pseudospin symmetry are obtained. The ss-wave (κ=0\kappa = 0 state) solutions for this problem are obtained by using the basic concept of the supersymmetric quantum mechanics approach and function analysis (standard approach) in the calculations. Under the spin symmetry and pseudospin symmetry, the energy equation and the corresponding two-component spinor wavefunctions for this potential and other special types of this potential are obtained. Extension of this result to κ0\kappa \neq 0 state is suggested.Comment: 18 page

    KamLAND Bounds on Solar Antineutrinos and neutrino transition magnetic moments

    Get PDF
    We investigate the possibility of detecting solar electron antineutrinos with the KamLAND experiment. These electron antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. KamLAND is sensitive to antineutrinos originated from solar 8{}^8B neutrinos. From KamLAND negative results after 145 days of data taking, we obtain model independent limits on the total flux of solar electron antineutrinos $\Phi({}^8 B)< 1.1-3.5\times 10^4 cm^{-2}\ s^{-1},morethanoneorderofmagnitudesmallerthanexistinglimits,andontheirappearanceprobability, more than one order of magnitude smaller than existing limits, and on their appearance probability P<0.15%(95antineutrinoproductionbyspinflavorprecession,thisupperboundimpliesanupperlimitontheproductoftheintrinsicneutrinomagneticmomentandthevalueofthesolarmagneticfield (95% CL). Assuming a concrete model for antineutrino production by spin-flavor precession, this upper bound implies an upper limit on the product of the intrinsic neutrino magnetic moment and the value of the solar magnetic field \mu B< 2.3\times 10^{-21}MeV95LMA MeV 95% CL (for LMA (\Delta m^2, \tan^2\theta)values).Limitsonneutrinotransitionmomentsarealsoobtained.Forrealisticvaluesofotherastrophysicalsolarparameterstheseupperlimitswouldimplythattheneutrinomagneticmomentisconstrainedtobe,inthemostconservativecase, values). Limits on neutrino transition moments are also obtained. For realistic values of other astrophysical solar parameters these upper limits would imply that the neutrino magnetic moment is constrained to be, in the most conservative case, \mu\lsim 3.9\times 10^{-12} \mu_B(95CL)forarelativelysmallfield (95% CL) for a relatively small field B= 50kG.Forhighervaluesofthemagneticfieldweobtain: kG. For higher values of the magnetic field we obtain: \mu\lsim 9.0\times 10^{-13} \mu_Bforfield for field B= 200kGand kG and \mu\lsim 2.0\times 10^{-13} \mu_Bforfield for field B= 1000$ kG at the same statistical significance.Comment: 13 pages, 2 figure

    Prediction of Ue3U_{e3} in Neutrino Mass Matrix with Two Zeros

    Full text link
    We have discussed predictions of Ue3|U_{e3}| and JCPJ_{CP} in the framework of the neutrino mass matrix with two zeros. In the case of the best fit values of tan2θ12\tan^2\theta_{12}, tan2θ23\tan^2\theta_{23}, Δmsun2\Delta m^2_{\rm sun} and Δmatm2\Delta m_{\rm atm}^2, the prediction of Ue3|U_{e3}| is 0.110.140.11\sim 0.14. The lower bound of Ue3|U_{e3}| is 0.05, which depends on tanθ12\tan\theta_{12} and tanθ23\tan\theta_{23}. We have investigated the stability of these predictions taking account of small corrections to zeros, which may come from radiative corrections or off-diagonal elements of the charged lepton massmatrix. The lower bound of Ue3|U_{e3}| comes down considerably due to the small corrections to zeros.Comment: Figures and discussions are adde

    Vanishing Effective Mass of the Neutrinoless Double Beta Decay?

    Full text link
    We stress that massive neutrinos may be Majorana particles even if the effective mass of the neutrinoless double beta decay m_ee vanishes. We show that current neutrino oscillation data do allow m_ee = 0 to hold, if the Majorana CP-violating phases lie in two specific regions. Strong constraints on three neutrino masses can then be obtained. We find that the neutrino mass spectrum performs a normal hierarchy: m_1 < m_2 < m_3. A possible texture of the neutrino mass matrix is also illustrated under the m_ee = 0 condition.Comment: RevTex 9 pages (2 PS figures included). More discussions and references added. Results partly changed. To appear in Phys. Rev.

    An improved fitting formula for the dark matter bispectrum

    Get PDF
    In this paper we present an improved fitting formula for the dark matter bispectrum motivated by the previous phenomenological approach of Scoccimarro & Couchman (2001). We use a set of LCDM simulations to calibrate the fitting parameters in the k-range of 0.03 h/Mpc<k<0.4 h/Mpc and in the redshift range of 0<z<1.5. This new proposed fit describes well the BAO-features although it was not designed to. The deviation between the simulations output and our analytic prediction is typically less than 5% and in the worst case is never above 10%. We envision that this new analytic fitting formula will be very useful in providing reliable predictions for the non-linear dark matter bispectrum for LCDM models.Comment: 16 pages, 5 figures. Published in JCA

    Direct and Indirect Detection of Dark Matter in D6 Flavor Symmetric Model

    Full text link
    We study a fermionic dark matter in a non-supersymmetric extension of the standard model with a family symmetry based on D6xZ2xZ2. In our model, the final state of the dark matter annihilation is determined to be e+ e- by the flavor symmetry, which is consistent with the PAMELA result. At first, we show that our dark matter mass should be within the range of 230 GeV - 750 GeV in the WMAP analysis combined with mu to e gamma constraint. Moreover we simultaneously explain the experiments of direct and indirect detection, by simply adding a gauge and D6 singlet real scalar field. In the direct detection experiments, we show that the lighter dark matter mass ~ 230 GeV and the lighter standard model Higgs boson ~ 115 GeV is in favor of the observed bounds reported by CDMS II and XENON100. In the indirect detection experiments, we explain the positron excess reported by PAMELA through the Breit-Wigner enhancement mechanism. We also show that our model is consistent with no antiproton excess suggested by PAMELA.Comment: 20 pages, 9 figures, 2 tables, accepted version for publication in European Physical Journal

    wd=1w_d=-1 in interacting quintessence model

    Full text link
    A model consisting of quintessence scalar field interacting with cold dark matter is considered. Conditions required to reach wd=1w_d=-1 are discussed. It is shown that depending on the potential considered for the quintessence, reaching the phantom divide line puts some constraints on the interaction between dark energy and dark matter. This also may determine the ratio of dark matter to dark energy density at wd=1w_d=-1.Comment: 10 pages, references updated, some notes added, minor changes applied, accepted for publication in Eur. Phys. J.

    Neutrino Masses with "Zero Sum" Condition: mν1+mν2+mν3=0m_{\nu_1} + m_{\nu_2} + m_{\nu_3} = 0

    Full text link
    It is well known that the neutrino mass matrix contains more parameters than experimentalists can hope to measure in the foreseeable future even if we impose CP invariance. Thus, various authors have proposed ansatzes to restrict the form of the neutrino mass matrix further. Here we propose that mν1+mν2+mν3=0m_{\nu_1} + m_{\nu_2} + m_{\nu_3} = 0; this ``zero sum'' condition can occur in certain class of models, such as models whose neutrino mass matrix can be expressed as commutator of two matrices. With this condition, the absolute neutrino mass can be obtained in terms of the mass-squared differences. When combined with the accumulated experimental data this condition predicts two types of mass hierarchies, with one of them characterized by mν32mν12mν20.063m_{\nu_3} \approx -2m_{\nu_1} \approx -2 m_{\nu_2} \approx 0.063 eV, and the other by mν1mν20.054m_{\nu_1} \approx -m_{\nu_2} \approx 0.054 eV and mν30.0064m_{\nu_3} \approx 0.0064 eV. The mass ranges predicted is just below the cosmological upper bound of 0.23 eV from recent WMAP data and can be probed in the near future. We also point out some implications for direct laboratory measurement of neutrino masses, and the neutrino mass matrix.Comment: Latex 12 pages. No figures. New references adde

    Dark Energy and Neutrino CPT Violation

    Full text link
    In this paper we study the dynamical CPT violation in the neutrino sector induced by the dark energy of the Universe. Specifically we consider a dark energy model where the dark energy scalar derivatively interacts with the right-handed neutrinos. This type of derivative coupling leads to a cosmological CPT violation during the evolution of the background field of the dark energy. We calculate the induced CPT violation of left-handed neutrinos and find the CPT violation produced in this way is consistent with the present experimental limit and sensitive to the future neutrino oscillation experiments, such as the neutrino factory.Comment: 10 pages, 2 figures. Typos corrected and references added. To be published in EPJ
    corecore