74,639 research outputs found
The Schrodinger-like Equation for a Nonrelativistic Electron in a Photon Field of Arbitrary Intensity
The ordinary Schrodinger equation with minimal coupling for a nonrelativistic
electron interacting with a single-mode photon field is not satisfied by the
nonrelativistic limit of the exact solutions to the corresponding Dirac
equation. A Schrodinger-like equation valid for arbitrary photon intensity is
derived from the Dirac equation without the weak-field assumption. The
"eigenvalue" in the new equation is an operator in a Cartan subalgebra. An
approximation consistent with the nonrelativistic energy level derived from its
relativistic value replaces the "eigenvalue" operator by an ordinary number,
recovering the ordinary Schrodinger eigenvalue equation used in the formal
scattering formalism. The Schrodinger-like equation for the multimode case is
also presented.Comment: Tex file, 13 pages, no figur
Microscopic Approach to Shear Viscosities in Superfluid Gases: From BCS to BEC
We compute the shear viscosity, , at general temperatures , in a
BCS-BEC crossover scheme which is demonstrably consistent with conservation
laws. The study of is important because it constrains microscopic
theories by revealing the excitation spectra. The onset of a normal state
pairing gap and the contribution from pair degrees of freedom imply that
at low becomes small, rather than exhibiting the upturn predicted by most
others. Using the local density approximation, we find quite reasonable
agreement with just-published experiments.Comment: 4 pages, 2 figure
The Euler-Lagrange Cohomology and General Volume-Preserving Systems
We briefly introduce the conception on Euler-Lagrange cohomology groups on a
symplectic manifold and systematically present the
general form of volume-preserving equations on the manifold from the
cohomological point of view. It is shown that for every volume-preserving flow
generated by these equations there is an important 2-form that plays the analog
role with the Hamiltonian in the Hamilton mechanics. In addition, the ordinary
canonical equations with Hamiltonian are included as a special case with
the 2-form . It is studied the other volume preserving
systems on . It is also explored the relations between
our approach and Feng-Shang's volume-preserving systems as well as the Nambu
mechanics.Comment: Plain LaTeX, use packages amssymb and amscd, 15 pages, no figure
Almost Perfect Privacy for Additive Gaussian Privacy Filters
We study the maximal mutual information about a random variable
(representing non-private information) displayed through an additive Gaussian
channel when guaranteeing that only bits of information is leaked
about a random variable (representing private information) that is
correlated with . Denoting this quantity by , we show that
for perfect privacy, i.e., , one has for any pair of
absolutely continuous random variables and then derive a second-order
approximation for for small . This approximation is
shown to be related to the strong data processing inequality for mutual
information under suitable conditions on the joint distribution . Next,
motivated by an operational interpretation of data privacy, we formulate the
privacy-utility tradeoff in the same setup using estimation-theoretic
quantities and obtain explicit bounds for this tradeoff when is
sufficiently small using the approximation formula derived for
.Comment: 20 pages. To appear in Springer-Verla
An optical diode made from a `flying' photonic crystal
Optical diodes controlling the flow of light are of principal significance
for optical information processing 1. They transmit light from an input to an
output, but not in reverse direction. This breaking of time reversal symmetry
is typically achieved via non-linear 2,3 or magnetic effects 4, which imposes
limits to all-optical control 5-7, on-chip integration 7-11, or single-photon
operation 12. Here, we propose an optical diode which requires neither magnetic
fields nor strong input fields. It is based on a flying photonic crystal. Due
to the Doppler effect, the crystal has a band gap with frequency depending on
the light propagation direction relative to the crystal motion.
Counter-intuitively, our setup does not involve the movement of any material
parts. Rather, the flying photonic crystal is realized by optically inducing a
spatially periodic but moving modulation of the optical properties of a
near-resonant medium. The flying crystal not only opens perspectives for
optical diodes operating at low light levels or integrated in small solid state
devices, but also enables novel photonic devices such as optically tunable
mirrors and cavities.Comment: 13 pages, 4 figures, presented in PQE 201
Topological Analysis of Emerging Bipole Clusters Producing Violent Solar Events
During the rising phase of Solar Cycle 24 tremendous activity occurred on the
Sun with fast and compact emergence of magnetic flux leading to bursts of
flares (C to M and even X-class). We investigate the violent events occurring
in the cluster of two active regions (ARs), NOAA numbers 11121 and 11123,
observed in November 2010 with instruments onboard the {\it Solar Dynamics
Observatory} and from Earth. Within one day the total magnetic flux increased
by with the emergence of new groups of bipoles in AR 11123. From all the
events on 11 November, we study, in particular, the ones starting at around
07:16 UT in GOES soft X-ray data and the brightenings preceding them. A
magnetic-field topological analysis indicates the presence of null points,
associated separatrices and quasi-separatrix layers (QSLs) where magnetic
reconnection is prone to occur. The presence of null points is confirmed by a
linear and a non-linear force-free magnetic-field model. Their locations and
general characteristics are similar in both modelling approaches, which
supports their robustness. However, in order to explain the full extension of
the analysed event brightenings, which are not restricted to the photospheric
traces of the null separatrices, we compute the locations of QSLs. Based on
this more complete topological analysis, we propose a scenario to explain the
origin of a low-energy event preceding a filament eruption, which is
accompanied by a two-ribbon flare, and a consecutive confined flare in AR
11123. The results of our topology computation can also explain the locations
of flare ribbons in two other events, one preceding and one following the ones
at 07:16 UT. Finally, this study provides further examples where flare-ribbon
locations can be explained when compared to QSLs and only, partially, when
using separatrices.Comment: 42 pages, 15 figure
- …