67,650 research outputs found

    A non-variational approach to nonlinear stability in stellar dynamics applied to the King model

    Full text link
    In previous work by Y. Guo and G. Rein, nonlinear stability of equilibria in stellar dynamics, i.e., of steady states of the Vlasov-Poisson system, was accessed by variational techniques. Here we propose a different, non-variational technique and use it to prove nonlinear stability of the King model against a class of spherically symmetric, dynamically accessible perturbations. This model is very important in astrophysics and was out of reach of the previous techniques

    Constructions of free commutative integro-differential algebras

    Full text link
    In this survey, we outline two recent constructions of free commutative integro-differential algebras. They are based on the construction of free commutative Rota-Baxter algebras by mixable shuffles. The first is by evaluations. The second is by the method of Gr\"obner-Shirshov bases.Comment: arXiv admin note: substantial text overlap with arXiv:1302.004

    Plasmon assisted transmission of high dimensional orbital angular momentum entangled state

    Full text link
    We present an experimental evidence that high dimensional orbital angular momentum entanglement of a pair of photons can be survived after a photon-plasmon-photon conversion. The information of spatial modes can be coherently transmitted by surface plasmons. This experiment primarily studies the high dimensional entangled systems based on surface plasmon with subwavelength structures. It maybe useful in the investigation of spatial mode properties of surface plasmon assisted transmission through subwavelength hole arrays.Comment: 7 pages,6 figure

    Free Rota-Baxter algebras and rooted trees

    Full text link
    A Rota-Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota-Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota-Baxter algebras have been for commutative algebras. Two constructions of free commutative Rota-Baxter algebras were obtained by Rota and Cartier in the 1970s and a third one by Keigher and one of the authors in the 1990s in terms of mixable shuffles. Recently, noncommutative Rota-Baxter algebras have appeared both in physics in connection with the work of Connes and Kreimer on renormalization in perturbative quantum field theory, and in mathematics related to the work of Loday and Ronco on dendriform dialgebras and trialgebras. This paper uses rooted trees and forests to give explicit constructions of free noncommutative Rota--Baxter algebras on modules and sets. This highlights the combinatorial nature of Rota--Baxter algebras and facilitates their further study. As an application, we obtain the unitarization of Rota-Baxter algebras.Comment: 23 page

    Spitzer's Identity and the Algebraic Birkhoff Decomposition in pQFT

    Full text link
    In this article we continue to explore the notion of Rota-Baxter algebras in the context of the Hopf algebraic approach to renormalization theory in perturbative quantum field theory. We show in very simple algebraic terms that the solutions of the recursively defined formulae for the Birkhoff factorization of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a non-commutative generalization of the well-known Spitzer's identity. The underlying abstract algebraic structure is analyzed in terms of complete filtered Rota-Baxter algebras.Comment: 19 pages, 2 figure

    Interactions of Charmed Mesons with Light Pseudoscalar Mesons from Lattice QCD and Implications on the Nature of the D_{s0}^*(2317)

    Get PDF
    We study the scattering of light pseudoscalar mesons (π\pi, KK) off charmed mesons (DD, DsD_s) in full lattice QCD. The S-wave scattering lengths are calculated using L\"uscher's finite volume technique. We use a relativistic formulation for the charm quark. For the light quark, we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We calculate the scattering lengths of isospin-3/2 DπD\pi, DsπD_s\pi, DsKD_sK, isospin-0 DKˉD\bar{K} and isospin-1 DKˉD\bar{K} channels on the lattice. For the chiral extrapolation, we use a chiral unitary approach to next-to-leading order, which at the same time allows us to give predictions for other channels. It turns out that our results support the interpretation of the Ds0∗(2317)D_{s0}^*(2317) as a DKDK molecule. At the same time, we also update a prediction for the isospin breaking hadronic decay width Γ(Ds0∗(2317)→Dsπ)\Gamma(D_{s0}^*(2317)\to D_s\pi) to (133±22)(133\pm22) keV.Comment: 22 pages, 5 figures; a typo in Table II corrected (for the coefficients of the NLO amplitudes

    Magnetic anisotropy and spin-spiral wave in V, Cr and Mn atomic chains on Cu(001) surface: First principles calculations

    Full text link
    Recent ab intio studies of the magnetic properties of all 3d transition metal(TM) freestanding atomic chains predicted that these nanowires could have a giant magnetic anisotropy energy (MAE) and might support a spin-spiral structure, thereby suggesting that these nanowires would have technological applicationsin, e.g., high density magnetic data storages. In order to investigate how the substrates may affect the magnetic properties of the nanowires, here we systematically study the V, Cr and Mn linear atomic chains on the Cu(001) surface based on the density functional theory with the generalized gradient approximation. We find that V, Cr, and Mn linear chains on the Cu(001) surface still have a stable or metastable ferromagnetic state. However, the ferromagnetic state is unstable against formation of a noncollinear spin-spiral structure in the Mn linear chains and also the V linear chain on the atop sites on the Cu(001) surface, due to the frustrated magnetic interactions in these systems. Nonetheless, the presence of the Cu(001) substrate does destabilize the spin-spiral state already present in the freestanding V linear chain and stabilizes the ferromagnetic state in the V linear chain on the hollow sites on Cu(001). When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3d TM chains. Furthermore, both the orbital magnetic moments and MAEs for the V, Cr and Mn are small, in comparison with both the corresponding freestanding nanowires and also the Fe, Co and Ni linear chains on the Cu (001) surface.Comment: Accepted for publication in J. Phys. D: Applied Physic

    Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage

    Get PDF
    A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.Comment: to appear in Phys. Rev.

    Mixable Shuffles, Quasi-shuffles and Hopf Algebras

    Full text link
    The quasi-shuffle product and mixable shuffle product are both generalizations of the shuffle product and have both been studied quite extensively recently. We relate these two generalizations and realize quasi-shuffle product algebras as subalgebras of mixable shuffle product algebras. As an application, we obtain Hopf algebra structures in free Rota-Baxter algebras.Comment: 14 pages, no figure, references update

    Snyder's Quantized Space-time and De Sitter Special Relativity

    Full text link
    There is a one-to-one correspondence between Snyder's model in de Sitter space of momenta and the \dS-invariant special relativity. This indicates that physics at the Planck length ℓP\ell_P and the scale R=3/ΛR=3/\Lambda should be dual to each other and there is in-between gravity of local \dS-invariance characterized by a dimensionless coupling constant g=ℓP/R∼10−61g=\ell_P/R\sim 10^{-61}.Comment: 8 page
    • …
    corecore