81,275 research outputs found
The Schrodinger-like Equation for a Nonrelativistic Electron in a Photon Field of Arbitrary Intensity
The ordinary Schrodinger equation with minimal coupling for a nonrelativistic
electron interacting with a single-mode photon field is not satisfied by the
nonrelativistic limit of the exact solutions to the corresponding Dirac
equation. A Schrodinger-like equation valid for arbitrary photon intensity is
derived from the Dirac equation without the weak-field assumption. The
"eigenvalue" in the new equation is an operator in a Cartan subalgebra. An
approximation consistent with the nonrelativistic energy level derived from its
relativistic value replaces the "eigenvalue" operator by an ordinary number,
recovering the ordinary Schrodinger eigenvalue equation used in the formal
scattering formalism. The Schrodinger-like equation for the multimode case is
also presented.Comment: Tex file, 13 pages, no figur
Hemodynamic evaluation using four-dimensional flow magnetic resonance imaging for a patient with multichanneled aortic dissection
The hemodynamic function of multichanneled aortic dissection (MCAD) requires close monitoring and effective management to avoid potentially catastrophic sequelae. This report describes a 47-year-old man who underwent endovascular repair based on findings from four-dimensional (4D) flow magnetic resonance imaging of an MCAD. The acquired 4D flow data revealed complex, bidirectional flow patterns in the false lumens and accelerated blood flow in the compressed true lumen. The collapsed abdominal true lumen expanded unsatisfactorily after primary tear repair, which required further remodeling with bare stents. This case study demonstrates that hemodynamic analysis using 4D flow magnetic resonance imaging can help understand the complex pathologic changes of MCAD
Recommended from our members
Visualisation of Origins, Destinations and Flows with OD Maps
We present a new technique for the visual exploration of origins (O) and destinations (D) arranged in geographic space. Previous attempts to map the flows between origins and destinations have suffered from problems of occlusion usually requiring some form of generalisation, such as aggregation or flow density estimation before they can be visualized. This can lead to loss of detail or the introduction of arbitrary artefacts in the visual representation. Here, we propose mapping OD vectors as cells rather than lines, comparable with the process of constructing OD matrices, but unlike the OD matrix, we preserve the spatial layout of all origin and destination locations by constructing a gridded two‐level spatial treemap. The result is a set of spatially ordered small multiples upon which any arbitrary geographic data may be projected. Using a hash grid spatial data structure, we explore the characteristics of the technique through a software prototype that allows interactive query and visualisation of 105‐106 simulated and recorded OD vectors. The technique is illustrated using US county to county migration and commuting statistics
Statistical physics-based reconstruction in compressed sensing
Compressed sensing is triggering a major evolution in signal acquisition. It
consists in sampling a sparse signal at low rate and later using computational
power for its exact reconstruction, so that only the necessary information is
measured. Currently used reconstruction techniques are, however, limited to
acquisition rates larger than the true density of the signal. We design a new
procedure which is able to reconstruct exactly the signal with a number of
measurements that approaches the theoretical limit in the limit of large
systems. It is based on the joint use of three essential ingredients: a
probabilistic approach to signal reconstruction, a message-passing algorithm
adapted from belief propagation, and a careful design of the measurement matrix
inspired from the theory of crystal nucleation. The performance of this new
algorithm is analyzed by statistical physics methods. The obtained improvement
is confirmed by numerical studies of several cases.Comment: 20 pages, 8 figures, 3 tables. Related codes and data are available
at http://aspics.krzakala.or
Metastable helium molecules as tracers in superfluid liquid He
Metastable helium molecules generated in a discharge near a sharp tungsten
tip operated in either pulsed mode or continuous field-emission mode in
superfluid liquid He are imaged using a laser-induced-fluorescence
technique. By pulsing the tip, a small cloud of He molecules is
produced. At 2.0 K, the molecules in the liquid follow the motion of the normal
fluid. We can determine the normal-fluid velocity in a heat-induced counterflow
by tracing the position of a single molecule cloud. As we run the tip in
continuous field-emission mode, a normal-fluid jet from the tip is generated
and molecules are entrained in the jet. A focused 910 nm pump laser pulse is
used to drive a small group of molecules to the vibrational state.
Subsequent imaging of the tagged molecules with an expanded 925 nm probe
laser pulse allows us to measure the velocity of the normal fluid. The
techniques we developed demonstrate for the first time the ability to trace the
normal-fluid component in superfluid helium using angstrom-sized particles.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Let
- …