156 research outputs found

    Asymmetric nanoparticle may go “active” at room temperature

    Get PDF
    Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle

    Evidence for Exciton Crystals in a 2D Semiconductor Heterotrilayer

    Full text link
    Two-dimensional (2D) transition metal dichalcogenides (TMDC) and their moire interfaces have been demonstrated for correlated electron states, including Mott insulators and electron/hole crystals commensurate with moire superlattices. Here we present spectroscopic evidences for ordered bosons - interlayer exciton crystals in a WSe2/MoSe2/WSe2 trilayer, where the enhanced Coulomb interactions over those in heterobilayers have been predicted to result in exciton ordering. While the dipolar interlayer excitons in the heterobilayer may be ordered by the periodic moire traps, their mutual repulsion results in de-trapping at exciton density larger than 10^11 cm^-2 to form mobile exciton gases and further to electron-hole plasmas, both accompanied by broadening in photoluminescence (PL) peaks and large increases in mobility. In contrast, ordered interlayer excitons in the trilayer are characterized by negligible mobility and by sharper PL peaks persisting to nex larger than 10^12 cm^-2. We find that an optically dark state attributed to the predicted quadrupolar exciton crystal transitions to the bright dipolar excitons either with increasing nex or by an applied electric field. These ordered interlayer excitons may serve as models for the exploration of quantum phase transitions and quantum coherent phenomena.Comment: 16 pages, 4 figures, S

    An in vitro vesicle formation assay reveals cargo clients and factors that mediate vesicular trafficking

    Get PDF
    The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.</p

    Orsay virus CP-δ adopts a novel β-bracelet structural fold and incorporates into virions as a head fiber

    Get PDF
    Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematod

    Initiation of RNA Polymerization and Polymerase Encapsidation by a Small dsRNA Virus

    Get PDF
    During the replication cycle of double-stranded (ds) RNA viruses, the viral RNA-dependent RNA polymerase (RdRP) replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 angstrom resolution structure of an RdRP from the human picobirnavirus (hPBV). In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1) the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2) the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3) RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4) the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP) indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly.Peer reviewe

    A SURF4-to-proteoglycan relay mechanism that mediates the sorting and secretion of a tagged variant of sonic hedgehog

    Get PDF
    SignificanceSonic Hedgehog (Shh) is a key signaling molecule that plays important roles in embryonic patterning, cell differentiation, and organ development. Although fundamentally important, the molecular mechanisms that regulate secretion of newly synthesized Shh are still unclear. Our study reveals a role for the cargo receptor, SURF4, in facilitating export of Shh from the endoplasmic reticulum (ER) via a ER export signal. In addition, our study provides evidence suggesting that proteoglycans promote the dissociation of SURF4 from Shh at the Golgi, suggesting a SURF4-to-proteoglycan relay mechanism. These analyses provide insight into an important question in cell biology: how do cargo receptors capture their clients in one compartment, then disengage at their destination?</p

    PTCDA molecular monolayer on Pb thin films: An unusual π-electron Kondo system and its interplay with a quantum-confined superconductor

    Get PDF
    The hybridization of magnetism and superconductivity has been an intriguing playground for correlated electron systems, hosting various novel physical phenomena. Usually, localized d- or f-electrons are central to magnetism. In this study, by placing a PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) molecular monolayer on ultra-thin Pb films, we built a hybrid magnetism/superconductivity (M/SC) system consisting of only sp electronic levels. The magnetic moments reside in the unpaired molecular orbital originating from interfacial charge-transfers. We reported distinctive tunneling spectroscopic features of such a Kondo screened pi-electron impurity lattice on a superconductor in the regime of TK>>delta suggesting the formation of a two-dimensional bound states band. Moreover, moiré superlattices with tunable twist angle and the quantum confinement in the ultra-thin Pb films provide easy and flexible implementations to tune the interplay between the Kondo physics and the superconductivity, which are rarely present in M/SC hybrid systems.Center for Dynamics and Control of Material
    • …
    corecore