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Abstract
During the replication cycle of double-stranded (ds) RNA viruses, the viral RNA-dependent

RNA polymerase (RdRP) replicates and transcribes the viral genome from within the viral

capsid. How the RdRP molecules are packaged within the virion and how they function

within the confines of an intact capsid are intriguing questions with answers that most likely

vary across the different dsRNA virus families. In this study, we have determined a 2.4 Å

resolution structure of an RdRP from the human picobirnavirus (hPBV). In addition to the

conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop

structure located near the C-terminus of the protein that is inserted into its active site. In
vitro RNA polymerization assays and site-directed mutagenesis showed that: (1) the hPBV

RdRP is fully active using both ssRNA and dsRNA templates; (2) the insertion loop likely

functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3)

RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4) the

preference of virus-specific RNA during transcription is dictated by the lower melting tem-

perature associated with the terminal sequences. Co-expression of the hPBV RdRP and

the capsid protein (CP) indicated that, under the conditions used, the RdRP could not be

incorporated into the recombinant capsids in the absence of the viral genome. Additionally,

the hPBV RdRP exhibited higher affinity towards the conserved 5’-terminal sequence of the

viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific

binding to the viral RNAs during assembly.

Author Summary

Viral polymerases replicate the genome of the virus, which is essential for the synthesis of
the progeny. All double-stranded (dsRNA) viruses have virion-associated polymerases
that catalyze RNA synthesis within an intact capsid. Picobirnavirus (PBV) is a small
dsRNA virus, and it has been shown that the capsid of PBV possesses an unusual
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architecture suggesting an uncommon assembly pathway that it could potentially share
with another group of small dsRNA viruses called partitiviruses. We have performed both
structural and functional studies to look at how the PBV polymerase performs its function
and how these molecules are placed within the capsid. The PBV RdRP structure was solved
and revealed that the RdRP has an interesting loop structure in its interior. Additionally,
activity assays showed that the RdRP possesses catalytic activity in the absence of other
viral proteins. Removing the loop structure was found to change the way that the RdRP
initiates RNA replication. Further experiments also showed that the RdRP did not interact
with the viral capsid protein (CP) but had a strong affinity for a conserved terminal
sequence of the PBV genome. This suggests that in PBV the RdRP may be encapsidated
based upon both the RdRP and CP co-interacting with the viral genome.

Introduction
Double-stranded (ds) RNA viruses are a diverse group of viruses that vary widely in host range
(humans, animals, plants, fungi, and bacteria), genome segment number (one to twelve), and in
the number of capsid layers, with many of them considered important pathogens of either agri-
culture or human health. A common feature of dsRNA viruses is that their capsid associated
polymerase performs both of its functions, namely replicating as well as transcribing the viral
genome, from within the confines of the virus capsid. This sequestration of the polymerase and
the dsRNA genome prevents the activation of the host’s RNA induced antiviral response [1].

During the viral replication cycle, dsRNA viruses have been shown to encapsidate up to
twelve RNA-dependent RNA polymerase (RdRP) molecules in each virus particle [2–5] To
date, several different mechanisms of incorporating the RdRP molecules into the capsid have
been identified. Those that possess multi-layered capsids, such as the bacteriophage ϕ6, rotavi-
rus, and reovirus, as well as the single-layered capsids of cypoviruses have been shown to attach
their polymerase molecules to the inner surface of the capsid through direct protein-protein
interactions [6–10], suggesting that non-covalent protein-protein interaction plays an impor-
tant role in RdRP incorporation. A number of single-shelled dsRNA viruses, such as the yeast
L-A virus, express their polymerase as a capsid protein (CP)-RdRP (gag-pol) fusion protein,
which is then incorporated into viral particles as a minor structural component during capsid
assembly [11,12]. With few exceptions, most notably the polymerase of bacteriophage ϕ6 [13],
polymerases from dsRNA viruses are not fully active when their respective capsid proteins are
not present [14–16]. It has been proposed that the dependence of polymerase activity on the
presence of capsid proteins may help to ensure that dsRNA products are preferentially pro-
duced only within a capsid enclosure [17].

The crystal structures of the RdRPs from several dsRNA viruses (i.e. ϕ6, reovirus, rotavirus,
and birnavirus) have been determined, and all have been found to contain a core polymerase
domain with a right-hand shape [18–21]. In reovirus and rotavirus polymerases, which cata-
lyze conservative RNA transcription, possess elaborate N- and C-terminal domains that inter-
act with the core polymerase domain, thus creating a cage-like structure with four channels
leading in and out of the active site at the center of the molecule [22]. These polymerases also
possess an mRNA cap binding site that may facilitate the initiation of viral RNA transcription
[19,21]. In contrast, the ϕ6 and birnavirus polymerases, which produce RNA transcripts in a
semi-conservative manner, are relatively smaller in size with a structure containing only three
active site channels. Distinct structural features have been identified in the RdRPs of ϕ6, reovi-
rus and rotavirus that function as a structural platform for the binding of a single priming
nucleotide to allow for de novo initiation of RNA synthesis [18,19,21,23,24].
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Picobirnaviruses (PBV) are small, non-enveloped dsRNA viruses infecting a wide range of
mammalian and avian species [25–29]. Human PBV (hPBV) has been identified on almost
every continent, and has been associated with acute gastroenteritis primarily in children and
people that are immunocompromised [30,31]. It has a bi-segmented genome with the genome
segment two (PBV2) encoding the viral RdRP and the genome segment one (PBV1) encoding
the CP and a protein of unknown function [32]. The crystal structure of a rabbit PBV virus-
like particle (VLP) shows that the capsid possesses T = 1 icosahedral symmetry in which the
asymmetric unit is a dimer. Such an organization is sometimes referred to as “T = 2” structure
and is unique for dsRNA viruses [33]. However, the overall capsid organization of PBV appears
to be somewhat different from the organization of the larger dsRNA viruses like reoviruses
[34]. Instead of having side-by-side CP dimers clustering around the 5-fold symmetry axes (i.e.
CP decamers), the PBV capsid is made of diamond-shaped dimers of dimers (i.e. CP tetra-
mers). Such an unusual capsid organization has also been observed in fungal infecting partiti-
viruses, another family of dsRNA viruses with a bi-segmented genome [35,36]. The CPs for
PBV and partitiviruses are small in size, with a structural fold that somewhat differs from those
found in larger dsRNA viruses such as reoviruses and rotaviruses. Interestingly, the major cap-
sid protein P1 of cystoviruses likely also forms tetramers, but the geometric shape of such tetra-
mers and the structural fold of the P1 are somewhat different from those of PBV and partivirus
CPs [37,38].

To elucidate the mechanisms of RNA replication, transcription, and RdRP encapsidation by
this group of largely uncharacterized, small dsRNA viruses, we have determined the structure
of the hPBV RdRP and systematically characterized its biochemical and enzymatic activities.
The hPBV RdRP possesses a canonical polymerase fold with a 24 amino acids (aa) long C-ter-
minal insertion loop structure that partially occupies the active site of the polymerase. A hPBV
RdRP lacking this insertion loop, ΔLOOP, was subsequently generated to determine the func-
tional role of this structure. Both the wild-type (WT) and ΔLOOP RdRPs are capable of RNA
synthesis using both homologous and heterologous, single- and double-stranded RNA tem-
plates in the absence of the CP. However, while the WT RdRP utilizes a de novo initiation
mechanism for RNA synthesis, the ΔLOOP could only initiate RNA replication through back-
priming, suggesting that the insertion loop serves as a platform for initiation. For transcription
the hPBV polymerase uses a semi-conservative mechanism in which the positive-strand of the
template dsRNA is dislodged from the duplex on the RdRP surface as the negative-strands
enters into the template tunnel and the newly produced transcript forms a duplex with the neg-
ative-sense RNA strand. We also demonstrated terminal nucleotidyl transferase (TNTase)
activity for hPBV polymerase being the second polymerase among dsRNA viruses reported
with TNTase activity. Co-expression of the hPBV RdRP and CP resulted in the formation of
~35 nm VLPs that were incapable of sequestering the RdRP molecules. Results from gel shift
assays indicate that the hPBV RdRP has a strong preference for the 5’-terminal untranslated
region of the positive-sense genomic RNA (i.e. 5’(+) UTR). Our results thus suggest that PBV
most likely has its RdRP molecules incorporated into viral particles through direct interactions
with the genomic RNAs, which are selectively packaged through specific interactions with the
viral CP.

Results

Overview of the PBV RdRP Structure
Recombinant hPBV RdRP (strain Hy005102) was overexpressed in Escherichia coli as a soluble
protein. The purified hPBV RdRP (534 aa, ~62 kDa with a N-terminal 6xHis tag) exists in solu-
tion as a monomer, based on its gel filtration chromatography elution profile (S1 Fig). hPBV
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RdRP was crystallized in the space group of P21 with two molecules in each asymmetric unit.
The crystal structure was solved to 2.4 Å resolution by single-wavelength anomalous dispersion
(SAD) using Se-Met derivatized crystals (Table 1). In the final model of the hPBV RdRP, one
molecule is comprised of residues 1–494, 500–511, and 518–534 (Fig 1A), while the other mol-
ecule contains residues 1–495 and 520–534.

The hPBV RdRP has an overall oval shape and is ~50 x 60 x 60 Å3 in size (Figs 1 and 2).
There are a total of 24 α-helices and 14 β-strands in each molecule. The polypeptide can be
divided into three domains based on their function: an N-terminal domain (aa 1–84), a core
polymerase domain (aa 85–470), and a C-terminal domain (aa 471–534) (Fig 1A and 1C; S2
Fig). The polymerase domain, which is structurally highly conserved amongst RNA viruses
[39], has a right-hand configuration with three subdomains: the fingers (aa 85–230, 268–324),
palm (aa 231–267, 325–414), and thumb (aa 415–470) (Fig 1A and 1C). The palm subdomain
hosts the three key aspartic acid residues, D261, D359, and D360, of the active site (Fig 1A).

Domain Structure of the hPBV RdRP
The hPBV core polymerase domain is rather compact with only 386 aa in total (Fig 1B). The
palm subdomain, which hosts the catalytic active site, is composed of five α-helices and six β-
strands (i.e. α11–13, 16, 17 and β6, 9–13) and contains the polymerase motifs A-E that are con-
served among all RdRPs (Fig 1B and 1C; red) [40]. The most noticeable structural feature of
the palm is a central, four-stranded β-sheet consisting of a β-hairpin (i.e. β9, β10) and two anti-
parallel β-strands (i.e. β6, β11). The polymerase motif C, which contains the highly conserved
“-GDD-” sequence, is mapped to the β-hairpin. The two other β-strands (β6, β11) of the central
β-sheet contain motifs A and D, respectively. The motif A has the conserved sequence of
“DXXXXD” whereas motif D is more variable in sequence. The first aspartate from motif A (i.
e. D261) and the two aspartates from motif C (i.e. D359 and D360) constitute the active site as
they help to coordinate two divalent metal ions for charge relay and intermediate stabilization

Table 1. PBV RdRP data collection and refinement statistics.

Apo WT RdRP 1 ΔLOOP RdRP 1

Structure determination

Space Group P21 P41212

Unite Cell Dimensions, Å a = 75.7, b = 78.8, c = 101.8, β = 91.4° a = 77.5, c = 183.8

Resolution, Å 50–2.4 50–2.0

Number of frames 180 180

Number of reflections 165,949 505,891

Completeness 99.4% (96.5%) 99.9% (98.8%)

I/σ 10.4 (2.4) 19.6 (2.5)

Rmerge 0.11 (0.369) 0.093 (0.235)

Wavelength, Å 0.979 0.979

Molecules per Asymmetric Unit 2 1

SeMet Sites 36 n/a

Refinement

Rfree 0.224 0.201

Rwork 0.170 0.172

Ramachandran Favored 96.8% 98.6%

RMS of bond lengths and
angels

0.010Å, 1.080° 0.008Å, 0.900°

1 The numbers in parenthesis are for the highest resolution shell

doi:10.1371/journal.ppat.1005523.t001
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during catalysis. The motif D mediates the binding of the incoming nucleotide substrate and
plays an important role in determining the efficiency and fidelity of nucleotide addition [41].
Motif B, which folds into a strand-turn-helix structure at the interface between the fingers and
palm subdomains, has been found to interact with the RNA template to guide it into the active
site of the polymerase [42]. Motif E folds into a β-hairpin at the interface between the palm and
the thumb subdomains, and forms a part of the “primer grip” as discussed below [40].

Fig 1. The structure of the hPBV RdRP. (a) Ribbon diagram of the hPBV RdRP crystal structure. The N- and C-terminal domains are colored in yellow and
magenta, respectively. The core polymerase domain is shown in three different colors with the fingers in blue, the palm in red, and the thumb subdomain in
green. The three key aspartic acid residues are displayed in teal and the flexible insertion loop structure is highlighted in orange. Additionally, a close-up is
shown of the hPBV RdRP superimposed with the surface view of the oligonucleotide from the ϕ6 RdRP replication initiation complex (PDB ID 1HI0). The
oligonucleotide is colored in pink and the Mn2+ ion is colored grey. (b) The seven conserved core polymerase domain motifs. The N- and C-terminal domains
are omitted for clarity. Different motifs are colored according to the color keys shown in the figure. (c) Secondary structure assignment of the hPBV RdRP.
Disordered regions are shown by dashed lines. α-helices and β-strands are represented by cylinders and arrows, respectively. The seven polymerase motifs
are boxed and labeled sequentially as G, F, A, B, C, D, and E. The color scheme is the same as in (a).

doi:10.1371/journal.ppat.1005523.g001
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Close inspection shows that the fingers subdomain of the hPBV RdRP is composed of eight
α-helices and seven β-strands (Fig 1A and 1C; blue). At the top of the fingers subdomain is a
twisted, four-stranded β-sheet (β4, β5, β7, and β8) that forms the fingertip structure with an
extended loop, which contains the rNTP binding sequence (residues 182–199) denoted as the
RdRP motif F (Fig 1B and 1C) [40]. Structural studies on ϕ6 and hepatitis C virus (HCV)
RdRPs have revealed that the basic residues in the rNTP binding loop interact with the phos-
phates of the incoming nucleotide [18,43]. The fingers subdomain also contains the RdRP
motif G [44] that is located near a three-stranded antiparallel β-sheet (β1, β2, and β3; Fig 1B
and 1C). The structures of the ϕ6 and reovirus RdRPs have revealed that the residues of motif
G interact with the entering RNA template [18,21].

Situated at the other side of the polymerase palm across from the fingers subdomain is the
thumb subdomain, which is comprised of one β-strand (β14) followed by three α-helices (α18 -
α20; Fig 1A and 1C; green). The initial β14-strand forms a part of the “primer grip” along with
a β-hairpin (β12 and β13) from the palm subdomain (Fig 1A). The “primer grip”motif is com-
monly observed in viral RdRPs and has been shown to interact with the nascent/primer strand
during RNA synthesis [40].

The hPBV N-terminal domain is made of the first 84 residues of the polypeptide and con-
tains four α-helices (α1–4). With an overall L-shape, the N-terminal domain wraps around the
fingers and thumb subdomains with its long and short arms, respectively (Fig 1A; yellow). This
interaction allows the RdRP to maintain its active site in a closed conformation despite that
there is very little direct contact between the hPBV fingertip and the thumb subdomain. The
N-terminal domain in the RdRPs from infectious bursal disease virus, reovirus, and the rabbit
hemorrhagic disease viruses also helps to encircle the polymerase active site although the size
of these N-terminal domains can vary substantially [20,21,45]. The C-terminal domain of
hPBV is rather short with four α-helices. It lies adjacent to the thumb subdomain at the front
end of the polymerase palm (Fig 1A; magenta).

The hPBV RdRP contains three channels leading to the active site of the protein that are
believed to allow for dsRNA product export, template entry and NTP uptake (Fig 2). The
dsRNA product channel, which locates in the front of the molecule, is the largest of all three
with a diameter of ~18–20 Å, comparable to the diameter of a dsRNA helix (Fig 2A–2C). Both
the template and NTP channels are located near the interface between the fingers and thumb
subdomains, and are heavily lined with positively charged residues (Fig 2B, 2C and 2D). The
distance from the surface of the RdRP to the active site along the putative template entry chan-
nel could be spanned by 5 to 6 nucleotides as observed in the ϕ6 RdRP [46]. A patch of posi-
tively charged residues is found near the putative template entry channel (Fig 2C, dotted oval).
A positively charged plough has been previously noted in the structure of ϕ6 RdRP, and is
believed to play a role in separating the two strands of a dsRNA molecule allowing the template
RNA to enter the template entry channel, while the non-template RNA slides over the posi-
tively charged patch and is directed away from the RdRP [18].

Based upon a pairwise comparison using the program Dali [47], the structure of the hPBV
RdRP closely resembles that of the RdRPs from the members of the Caliciviridae (i.e. Z = 26.7
for the rabbit hemorrhagic disease virus and Z = 26.5 for the Norwalk virus) [45,48], Flaviviri-
dae (i.e. Z = 26.4 for the HCV and Z = 24.2 for the bovine viral diarrhea virus (BVDV)) [43,49–
51] and Picornaviridae (i.e. Z = 25.3 for the poliovirus) [52] families, suggesting a potential evo-
lutionary relationship between the RdRP of PBV and the RdRPs of these three viral families
having positive-sense ssRNA genomes. By contrast, the correlation of the hPBV polymerase to
the RdRPs from other dsRNA virus families appears to be more distant, with a Z = 18.8 for
phage ϕ6 [18], Z = 12.8 for rotavirus [19], Z = 12.1 for infectious bursal disease virus [20], and
Z = 9.3 for reovirus [21].
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Insertion Loop Structure
The hPBV RdRP possesses a highly flexible, 24-aa insertion loop structure (aa 495–518)
formed by an internal sequence from the C-terminal domain. This loop structure, which is
associated with higher than average temperature factor values, extends from the C-terminal
domain towards the catalytic site (Fig 1A). The location of the insertion loop resembles the
structure that functions as the initiation platform of the bacteriophage ϕ6 RdRP [23,24]. The
structure of the ϕ6 RdRP in complex with an oligonucleotide template (PDB ID 1HI0) was

Fig 2. Surface representation of the hPBV RdRP. (a) TheWT RdRPmolecule is shown from the front end in a similar orientation as in Fig 1A and colored
according to its electrostatic potential with positively charged regions in blue and negatively charged regions in red. (b-d) WT RdRP with the insertion loop
removed to reveal channels connected to the active site. Three consecutive views are provided, front (b), top (c) and back (d), that show the product channel,
the template entry channel, and the nucleotide diffusion channel, respectively. In the top view (c), a positively charged groove next to the template entry
channel is highlighted by a white dotted oval. The red dotted circle illustrates the approximate position of the polymerase active site in (b-d).

doi:10.1371/journal.ppat.1005523.g002
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superimposed onto the hPBV RdRP structure in order to model RNA binding by the hPBV
RdRP. In this model, the 3’-end of the template collides with the hPBV insertion loop structure,
suggesting that the insertion loop in its current position would sterically prevent the template
from binding to the active site of the RdRP as expected in the assembly of a productive initia-
tion complex (Fig 1A, right). Therefore, the hPBV insertion loop structure must undergo a sig-
nificant conformational change in order for RNA binding and replication to take place. Similar
structural rearrangement is probably required for dsRNA egress during both transcription and
genome replication. Interestingly, such structural arrangements were indeed observed in the β-
hairpin structure that serves as an initiation platform for the HCV RdRP following RNA bind-
ing [53]. In the ϕ6 polymerase, the loop that serves as the initiation platform remains in place
during the assembly of the initiation complex, but undergoes a conformational change at the
onset of the elongation process [54].

Based on our structural modeling and comparison to both the ϕ6 and HCV polymerases,
we speculate that the insertion loop of the hPBV RdRP may have two possible functions. First,
the loop may play an important role during the de novo initiation of RNA synthesis. Like in the
case of the ϕ6, HCV and several other flavivirus polymerases, the loop could function as a plat-
form to support the assembly of an initiation complex using a single nucleotide as a primer.
Another attractive hypothesis is that the insertion loop may function as a gatekeeper to regulate
RNA synthesis during the PBV virion assembly. The insertion loop in its observed structural
form would inhibit an RNA template from binding, but upon the RdRP binding with the CP (i.
e. in an assembled capsid), the insertion loop would adopt an alternative conformation to allow
efficient RNA synthesis in the fully/partially assembled hPBV particles.

Structure of the PBV RdRP without the Insertion Loop
To determine the exact biological function of the insertion loop structure, a hPBV RdRP lack-
ing the loop structure (i.e. ΔLOOP) was synthesized and expressed. Gel filtration chromatogra-
phy showed that ΔLOOP was eluted at a similar position as the WT protein (S1 Fig). The
ΔLOOP RdRP was crystallized and its structure solved by molecular replacement using the
WT RdRP structure as the phasing model (Fig 3A, Table 1). The overall structure of ΔLOOP
appears to be essentially the same as the WT RdRP (root-mean-square deviation in dis-
tance = 0.4 Å for 3275 common atoms), except for the deleted insertion loop which became
unstructured in the ΔLOOP RdRP. Given this structural information, we are confident that the
removal of the insertion loop should not affect the overall folding of the polymerase, and that
the ΔLOOP RdRP should provide an excellent tool to study the function of the insertion loop
structure using in vitro assays.

Enzymatic Activities of the WT and ΔLOOP RdRPs
Polymerase activity assays were performed to determine if the WT and ΔLOOP RdRPs could
synthesize dsRNA from an ssRNA template. Both RdRPs were found to replicate the positive-
and negative-strands of the PBV genome segment 2 (PBV2+ and PBV2-, respectively) as well
as ϕ6-specific ssRNA template s+ (i.e. the positive-strand of the small, S, genome segment) with
similar efficiency (Fig 3B). However, the polymerase encountered some processivity issues, as
it produced also dsRNA products which were shorter than the expected full length dsRNAs
(Fig 3B). Further enzymatic assays showed that the WT RdRP is able to use dsRNA templates
to carry out transcription but the transcription activity of the ΔLOOP RdRP was compromised
(Fig 3B). Transcription activity was observed whenever homologous (i.e. PBV2) or heterolo-
gous dsRNAs (i.e. ϕ6 genomic RNA composed of segments S, M and L) were used as templates
(Fig 3B, S1 Table). This indicates that the hPBV RdRP is enzymatically active, can efficiently
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replicate and transcribe both homologous and heterologous templates, and does not require
the presence of the viral CP as a cofactor for RNA synthesis. Our findings thus rule out the

Fig 3. The structure and enzymatic activies of the hPBVWT andΔLOOP RdRP. (a) Ribbon diagram of the hPBV ΔLOOPRdRP crystal structure. The
color scheme and the viewing orientation is the same as that used for the WT RdRP in Fig 1A. Below is a structural alignment between the WT (cyan) and the
ΔLOOP (magenta) RdRPs. (b) The replication and transcription activity and the template specificity of the hPBVWT (left) and ΔLOOP (right) RdRPs. Three
ssRNA and two dsRNA templates were used: (+) and (-)strands of the PBV genome segment 2 (PBV2+ and PBV-, respectively), (+)strand of the ϕ6 genomic
segment S (s+), PBV dsRNA genome segment 2 (PBV2) and ϕ6 genomic dsRNA (ϕ6). (c) A schematic representation of the TNTase activity using either
ssRNA (left) or dsRNA (right) as a substrate. (d) TNTase activity assays for the WT and the ΔLOOPRdRPs using either ϕ6 genomic dsRNA (left) or ϕ6 and
PBV specific ssRNA substrates (right). The RdRPs used are indicated on the top and the RNA templates on the bottom (b and d). The mobility of the ϕ6 and
hPBV-specific dsRNAs and ssRNAs are marked on the left (b and d).

doi:10.1371/journal.ppat.1005523.g003
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scenario where the loop structure functions as a regulatory element to prevent premature
dsRNA synthesis by the capsid-free polymerase.

Terminal nucleotidyl transferase (TNTase) activity was observed for both the WT and
ΔLOOP RdRPs (Fig 3C and 3D). TNTase activity involves the addition of one or several nucle-
otide(s) to the 3’-end of a nucleic acid molecule (Fig 3C). While there was no clear preference
for the hPBV-specific RNA substrate, both the WT and ΔLOOP RdRPs showed a strong pref-
erence for ssRNA over dsRNA (Fig 3D). Additionally, it was noted that the removal of the
insertion loop significantly increased the TNTase activity of the RdRP (Fig 3D). Given our
TNTase activity data and the fact that the insertion loop is located near the C-terminus of the
hPBV RdRP, we propose that the removal of the insertion loop structure leaves the dsRNA exit
channel of the protein permanently open (Fig 2B), thus allowing the 3’-end of the RNA mole-
cules to reach the active site for nucleotidyl addition in an orientation that is compatible for
nucleotide addition.

To rule out any histidine-tag (His-tag) associated artifacts, three versions of the hPBV
RdRP, an N-terminally and C-terminally His-tagged as well as a non-tagged RdRP, were tested
for RNA synthesis activity using the PBV2+ and PBV2- ssRNA templates as well as the PBV2
dsRNA template (S3 Fig). Our results indicated that there was no detectable difference in the
enzymatic activity between these three versions of the polymerase. Therefore, all of the poly-
merase activity assays described in this paper has been performed using the N-terminally His-
tagged protein.

The Role of the Insertion Loop in the De Novo Initiation
To evaluate the potential role of the insertion loop in the initiation of dsRNA synthesis (i.e. rep-
lication), aliquots of the dsRNA products were heat denatured before being analyzed by elec-
trophoresis in a native agarose gel (Fig 4A and 4B). Due to the heat denaturation, the dsRNA
products generated by the WT RdRP were converted to ssRNA, while the dsRNA products of
the ΔLOOP RdRP retained the same mobility as the original dsRNA (Fig 4A and 4B). This
result indicates that back-priming was taking place during dsRNA synthesis by the ΔLOOP
RdRP, thus producing a product that was covalently linked to the ssRNA template (Fig 4A,
right panel and b). Additionally, isotope incorporation from (γ-32P) GTP into the dsRNA
product was only detected for reactions containing the WT RdRP, further indicating that this
protein utilizes the de novo initiation mechanism (Fig 4C). Taken together, these results show
that the insertion loop structure of the hPBV RdRP can effectively block template back-prim-
ing and facilitates initiation via a primer-independent mechanism, possibly by providing a
docking site for the 3’-end of the RNA template and a binding site for the priming nucleotide.
This finding is consistent with the results obtained for the ϕ6 RdRP whenever its equivalent
stabilizing platform was removed [23,24].

Semi-conservative Transcription by the hPBV RdRP
There are two major ways for the transcription of the dsRNA genome: conservative and semi-
conservative transcription mechanism (Fig 5A). The isotope labeling of the dsRNA molecules
as an outcome of the transcription reaction indicated that the hPBV polymerase uses a semi-
conservative transcription mechanism (Figs 3B, 5A and 5B). The ability of the hPBV RdRP to
incorporate radioactivity from [γ-32P]-labeled GTP into the dsRNA product also confirmed
that the observation of radiolabeled dsRNAs was due to de novo RNA synthesis instead of ter-
minal nucleotidyl transfer catalyzed by the polymerase (Fig 5B, right panel). To get further sup-
port for the semi-conservative mechanism a time-course study using the ϕ6 genomic dsRNA
as a template was performed (S4 Fig). Indeed, 33P-label was first incorporated in dsRNA
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molecules before any labeled ssRNA could be observed (S4 Fig), confirming that semi-conser-
vative transcription was taken place (not replication of ssRNA transcripts produced by conser-
vative mechanism). The ϕ6 L segment was transcribed at the highest efficiency, resulting in a
strong dsRNA band that started to appear at around 30 minutes with increasing intensity till
120 minutes after the experiment began (S4 Fig). Considering that the L segment of ϕ6 is
~6.4kb long, we estimate that the rate of transcription by the hPBV RdRP is ~210 bases per
minute.

Template- and Strand-Specificity of the hPBV RdRP
The (-)strands of the two hPBV genome segments both start with 3’-CAU (S1 Table), so we set
forth to test the transcription specificity of the hPBV RdRP using dsRNA template with differ-
ent terminal sequences. Coincidentally, the (-)strand of the ϕ6 L segment also starts with 3’-
CAU, while the (-)strands of the ϕ6 S and M segments begin with 3’-CCU (S1 Table). We
found that, under the applied reaction conditions, the hPBV RdRP has a preference for dsRNA
templates in which the (-)strand starts with 3’-CAU over those starting with 3’-CCU (S4 Fig,

Fig 4. The hPBV RdRP insertion loop enables primer-independent RNA synthesis. (a) A schematic representation of the de novo (left) and back-
priming (right) initiation modes of the PBV RdRP displaying the effect of the heat-denaturation on the replication reaction products. (b) Native agarose gel
electrophoresis of the replication reaction products of ϕ6 Δs+ ssRNA before and after denaturation as indicated below. (c) Labeling of the replication reaction
products of ϕ6 Δs+ ssRNA with [γ-32P]-GTP in the initiation of RNA replication. The RdRPs applied are indicated at the bottom and the mobilities of the
dsRNAs and ssRNAs are marked on the left (b and c).

doi:10.1371/journal.ppat.1005523.g004
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Fig 5. Transcription activity of the hPBV RdRP. (a) Schematic drawings showing radiolabeled products
expected from conservative (left) and semi-conservative transcription (right). (b) Transcription activity of the
WT and the ΔLOOPRdRPs using virion derived ϕ6 genomic dsRNA. The expected position of the L, M, S
dsRNA segments are indicated on the left. Both [α-33P] UTP (left) and [γ-32P] GTP (right) were used to label
reaction products. The RdRPs applied are indicated at the top. (c) Transcription activity of the WT RdRPs
using PBV2 dsRNA templates synthesized in vitro. Three dsRNA templates were included: the full-length
PBV2 (i.e. PBV2), PBV2 without the first 33 base pairs (i.e. Δ1–33), and PBV2 without the first 645 base pairs
(i.e. Δ1–645). For the quantitation (right), the gel band intensities were normalized by the length (bp) of the
dsRNAmolecules. The RNAs applied and their (-)strand 3’-end sequences are shown at the bottom. The
mobilities of the dsRNAs are marked on the left (b and c).

doi:10.1371/journal.ppat.1005523.g005

PBV RNA-Dependent RNA Polymerase

PLOS Pathogens | DOI:10.1371/journal.ppat.1005523 April 14, 2016 12 / 26



Figs 3B and 5B). The preference for the ϕ6 L segment over the M and S segments was lost
when the terminal sequence of L was mutated to 3’-CCU (S5 Fig). On the other hand, when an
opposite change was introduced in the (-)strands of the ϕ6 genome segments M and S (3’-CCU
to 3’-CAU), the amount of product synthesized by the hPBV RdRP increased considerably (S5
Fig). The template preference of the hPBV RdRP was also evident when the usage of the PBV2
and ϕ6 S or ϕ6 L dsRNAs was compared in a competition experiment or side-by-side (S6B
Fig).

We then tested the ability of hPBV RdRP to transcribe full-length PBV2 and its two deletion
mutants, one with the first 33 nucleotides removed and the other with the first 645 nucleotides
removed (Fig 5C). As a result of the deletions, the 3’-ends of the (-) strands of the two trunca-
tion mutants, Δ1–33 and Δ1–645, became 3’-CCU and 3’-CCC, respectively. Transcription
assays showed that out of the three dsRNA templates, only the WT PBV2, which has a 3’-CAU
termini at the (-)strand, was efficiently transcribed (Fig 5C). Taking together the results with
the PBV2- and ϕ6-specific dsRNA constructs (S5 Fig and Fig 5C) sharing identical 3’-terminal
sequences in (+)strands (S1 Table) but variable in (-)strands, it appears that PBV RdRP has
strong preference on dsRNA templates having 3’-CAU. This data also suggest that the RdRP
predominantly produces (+)strands of the PBV2 and ϕ6 genome segments during transcrip-
tion reaction.

There are two possible explanations for the stronger transcription activity exhibited by the
hPBV RdRP towards native PBV2 (-)strand sequence ending with 3’-CAU. First, the lower
melting temperature associated with the 3’-CAU sequence likely facilitates the initiation of
RNA transcription. Second, it is possible that the 3’-CAU sequence makes specific interaction
with the hPBV RdRP, which would facilitate the binding of the viral RNA template and thus
helps to enhance its transcription activity. We have not observed any preference of the hPBV
RdRP towards ssRNA template (Figs 3B and S6A). Indeed, the fact that virus-specific ssRNA
was not replicated to a higher level when mixed with non-specific ssRNA in a competition
experiment argues against the second hypothesis. Therefore, we believe that the preference for
virus-specific dsRNA templates by the hPBV RdRP during transcription is largely due to the
lower melting temperature of the template terminal sequence.

RdRP Encapsidation during hPBV Assembly
Upon finding that the hPBV RdRP was capable of synthesizing dsRNA and ssRNA in the
absence of the CP (Fig 3B), the hPBV RdRP and CP were co-expressed to determine if the
encapsidation of the RdRP is mediated through direct protein-protein interactions with the
CP, as has been previously observed for the majority of dsRNA viruses characterized so far
[6,8,9]. Overexpression of the hPBV CP in E. coli resulted in the spontaneous formation of
VLPs. Such VLPs could be purified by ultracentrifugation using a CsCl gradient and have a
density of ~1.3 g/ml according to their migration behavior. Transmission electron microscopy
(TEM) images of the hPBV VLPs determined that they have a diameter of ~35 nm (Fig 6A),
similar to the size of the rabbit PBV VLPs previously reported [34]. While the N-terminus of
the rabbit PBV CP is proteolytically removed by self-cleavage after particle assembly, this does
not seem to be the case for the hPBV CP. We found that the hPBV CP without the N-terminal
peptide (Δ45) was also capable of self-assembly, and that the N-terminally truncated CP
migrated faster than the full-length protein in a reducing sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE) (Fig 6A and 6B).

The hPBV RdRP and the CP were co-expressed in E. coli using two expression vectors with
different antibiotic selectors. Any unpackaged His-tagged RdRP molecules that may have been
present in the clarified cell lysate were removed by Ni-NTA affinity chromatography. After
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ultracentrifugation, the VLP fraction was collected, denatured, and a Western blot was per-
formed to test for the presence of the RdRP utilizing an antibody directed against the 6xHis-tag
located at the N-terminus of the protein (Fig 6C). While the RdRP could be clearly detected in
the clarified lysate, no RdRP could be detected in the sample of the isolated VLPs. Therefore,
our results suggest that direct interactions between the hPBV RdRP and CP are weak. We
hypothesize that viral genomic material must be present for RdRP incorporation to occur and
that the interplay between the CP, RdRP, and the viral genome is needed for the encapsidation
of the RdRP during virion assembly. The fact that the constructs used to express the CP and
RdRP contained only the protein-coding sequence of the two open reading frames suggests
that the region of the hPBV genome required for RdRP encapsidation is potentially located in
the untranslated regions (UTRs) of the genome segments.

Recognition of the hPBV Genome by the RdRP
Gel shift assays were conducted to further examine the interaction between the RdRP and the
hPBV genome. Three 20-nt long RNA oligonucleotides were probed, one containing a non-
specific CA-repeat and the other two bearing the terminal sequences of the 5’- and 3’-UTRs of

Fig 6. Co-expression of the hPBV RdRP and CP. (a) TEM images of the purified hPBV VLPs for theWT CP (top) and the Δ45CP (bottom). The scale bar
represents 50 nm. (b) SDS-PAGE analysis of the recombinant capsids of both the full-length and Δ45 CPs. (c) Co-expression of the hPBV CP and RdRP.
Samples included are a prestained protein marker (lane 1), the soluble fraction of the cell lysate (lane 2), the Ni-NTA bound fraction (lane 3), and the purified
VLPs (lane 4). Proteins were separated by SDS-PAGE and detected byWestern blot using either anti-6xHis or anti-CP antibodies (two upper panels) or
staining with Coomassie blue (lower panel). The molecular weights of the pre-stained marker proteins are indicated in kDa on the left.

doi:10.1371/journal.ppat.1005523.g006
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the (+)strand of the hPBV genome segment 2 (i.e. 5’-(+)UTR and 3’-(+)UTR). It was deter-
mined that the WT RdRP has approximately a 10-fold higher affinity for the first 20 nucleo-
tides of the 5’-(+)UTR of the hPBV genome as compared to the last 20 nucleotides of the 3’-(+)
UTR or to a nonsensical CA-repeat (Fig 7A). Additionally, deleting the insertion loop appeared
to have a minimal effect on the overall RNA binding of the RdRP (Fig 7B).

Notably, both segments of the hPBV genome have an AU-rich (~80% for nucleotides 1 to
20) sequence at the 5’-end of their (+)strands that begins with a conserved 5 nucleotide motif
5’-GUAAA-. The AU-rich terminal sequence is predicted to form an RNA stem-loop structure
(S7 Fig) according to the program ViennaRNA Package 2.0 [55]. To test the binding affinity of
the hPBV RdRP towards authentic viral RNAs, we synthesized by in vitro transcription the
full-length PBV2+ ssRNA and a truncated version PBV2+ (Δ1–645) ssRNA with the first 645
nucleotides removed. Results from our gel shift assays show that the binding affinity of hPBV
RdRP for full-length PBV2+ is ~10 times stronger than PBV2+(Δ1–645), thus confirming that
the terminal sequence at the 5’-end of the PBV2+ binds specifically to the polymerase (Fig 7C).
The same trend was observed for the ΔLOOP RdRP, suggesting that the insertion loop is not
directly involved in the 5’-(+)UTR binding (Fig 7D).

Fig 7. RNA binding by the hPBVWT (a, c) and ΔLOOP (b, d) RdRPs analyzed by gel shift assays. The fraction of RNA bound was quantitated and plotted as
a function of protein concentration. The values were normalized by the total amount of RNA. (a, c) Three distinct RNA oligonucleotides were used, including:
(1) the first 20 nucleotides of the 5’-(+)UTR of hPBV genome segment 2 (black); (2) the last 20 nucleotides of the 3’-(+)UTR of the hPBV genome segment 2
(red); and (3) a 20-mer nonsensical CA repeat (blue). (b, d) Two RNAmolecules derived from the PBV2+ were used, including the full-length PBV2+ and the
PBV2+(Δ1–645). The obtained dissociation constants (Kd) for the different RNA oligonucleotides are indicated on the right.

doi:10.1371/journal.ppat.1005523.g007

PBV RNA-Dependent RNA Polymerase

PLOS Pathogens | DOI:10.1371/journal.ppat.1005523 April 14, 2016 15 / 26



Discussion
The high level of sequence conservation among RdRPs from various mammalian and avian
PBV strains indicates similar three-dimensional structures (S2A Fig). Five of the six variable
regions are located in either the N-terminal domain or the fingers subdomain, and all are
mapped to the surface of the protein (S2B Fig). The core polymerase domain of hPBV RdRP
closely resembles those from the members of the Caliciviridae, Flaviviridae, and Picornaviridae
families all having (+)sense ssRNA genomes. An interesting structural feature of this RdRP is
the presence of a 24-aa loop structure that extends from near the C-terminus of the protein to
just above the active site (Fig 1A). Through site-directed mutagenesis, we determined that the
loop structure most likely functions as a priming platform to support the binding of a single
priming nucleotide (Fig 4). Loop structures that perform a similar function have been observed
in the viral RdRPs of ϕ6, reovirus, rotavirus, and HCV [18,19,21,23,24,53]. In four-tunnel
RdRPs such as those from reovirus and rotavirus, the internal priming loops are formed by
sequences located between the fingers and palm domain. However, in three-tunnel polymer-
ases that catalyze semi-conservative RNA synthesis (i.e. ϕ6 and HCV), the priming loops
appear to be extended structures from the C-terminal domain. The position of the insertion
loop in the hPBV apo structure would prevent a template from reaching the active site due to
steric hindrance (Fig 1A, right panel). Therefore, we expect the insertion loop to undergo a sig-
nificant conformational change in order to accommodate an RNA template, similar to the con-
formational change observed for the HCV priming loop upon template binding [53]. While
the first half of the insertion loop sequence is highly conserved, the other half is somewhat vari-
able (S2B Fig). We speculate that the conserved region, including a strictly conserved tyrosine,
may interact with the priming nucleotide and/or template to support initiation.

Structural elements that support priming by a single nucleotide are also known to prevent
back-priming by spatially restricting access to the active site. Back-priming occurs during RNA
synthesis when the 3’-end of the template strand loops back to form a hairpin like structure
that is then extended by the RdRP [23] (Fig 4A, right panel). This results in the daughter strand
being covalently linked to the initial template preventing further replication of the back-primed
RNA. This phenomenon has been observed in vitro for HCV, BVDV, and a ϕ6 RdRP lacking
the priming loop [23,24,56–59]. Likewise, our results indicate that the insertion loop structure
from the hPBV RdRP can effectively prevent back-priming during dsRNA synthesis (Fig 4B)
and to support the de novo initiation (Fig 4C), consistent with the expected functionality for
the priming loop based on previous observations in other RdRPs.

In this paper we have systematically characterized the replication and transcription activity
of the hPBV RdRP as a paradigm for the Picobirnaviridae family. In vitro, the hPBV RdRP is
able to catalyze RNA synthesis using both ssRNA and dsRNA templates in the absence of the
viral CP (Figs 3 and 5). The enhanced transcription activity observed for the WT protein using
hPBV-specific dsRNA or templates harboring homologous 5’ terminal sequences (Fig 5C and
S6 Fig) can be explained by the lower melting temperature associated with the terminal
sequences. Alternatively, the enhanced transcriptional activity of the hPBV specific dsRNA
may be explained by base-specific interaction between the template and the RdRP itself, but we
consider it unlikely because enhanced replication activities were not observed for hPBV-spe-
cific ssRNA (Fig 3B). Interestingly, the identity of the second nucleotide of the template RNA
also regulates the transcription activity of the phage ϕ6 RdRP [60].

hPBV RdRP appears to transcribe dsRNA templates in a semi-conservative fashion (Fig 5).
Results from our time-course study show that nucleotides labeled with α-33P were first incor-
porated into dsRNA, indicating that the newly synthesized RNA formed a duplex RNA with its
template RNA (S4 Fig; Fig 5A, right panel). Except for the RdRPs of the members of Reoviridae
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family, semi-conservative transcription is reported for most of the dsRNA virus polymerases
characterized to-date, including RdRPs from the members of Partitiviridae [61], Birnaviridae
[62], and Cystoviridae [63] families. The rate of transcription by hPBV RdRP is ~210 bases per
minute. Although we have not experimentally confirmed that the (-)strand is used as a tem-
plate for transcription, our results with the terminally mutated PBV- and ϕ6-specific dsRNAs
strongly favor a scenario in which the sequence at the 3’-end of the (-)strand rather than (+)
strand determines the transcription efficiency (Figs 5C and S5, S1 Table). This likely reflects
the substantially lower melting temperature associated with the 3’-end of the (-)strands com-
pared to that of the (+)strands (S1 Table).

We also observed TNTase activity for both the WT and ΔLOOP hPBV RdRPs (Fig 3C and
3D). TNTase activity involves the addition of one or several, non-templated nucleotide(s) to
the 3’-end of an RNA molecule, and has previously been observed for a number of RdRPs
including those from HCV, BVDV, norovirus, poliovirus, and ϕ6 [64–67]. For many viral
RdRPs the biological implication of the TNTase activity is not yet clear. Template-independent
TNTase activity is probably used by the RdRP as a mechanism to terminate the synthesis of
nascent RNA strands, which would acquire one or more extra nucleotides at the 3’-end [65].
Alternatively, TNTase activity may function to repair the 3’-ends of the viral genomes that
have been partially degraded [66]. The results of our experiments support the notion that the
RNA substrate for the TNTase activity potentially enters the active site through the product
exit channel, as removing the insertion loop would leave the product exit channel of the protein
permanently open, thus explaining why the ΔLOOP RdRP displayed higher TNTase activity
than the WT enzyme, especially for the dsRNA substrates (Fig 3D).

All dsRNA viruses enclose RdRP molecules within their infectious particles. Our results
indicate that the hPBV RdRP and CP do not directly interact during the capsid assembly and
that the viral RdRP cannot be incorporated into the viral capsid in the absence of the viral
genome (Fig 6C). This finding is surprising because several other dsRNA viruses have been
found to package their RdRP molecules through direct protein-protein interactions or by
expressing a CP-RdRP fusion protein that is then incorporated into the viral particles as a
minor structural component [6,8,9,11,12]. We propose that the PBV RdRP molecules get
encapsidated as a complex with the viral genomic RNA, as we found that the hPBV polymerase
preferably interacts with the 5’-end of the (+)strand. It is likely that the co-packaging mecha-
nism applies not only to PBV but also to partitiviruses, another family of dsRNA viruses with a
small capsid that is arranged in a manner similar to PBV [35,36]. Such a co-packaging model is
consistent with the observation that in small dsRNA viruses, such as partitiviruses, the number
of RdRP molecules packaged during assembly is similar to the number of packaged genome
segments [68,69]. Interestingly, recent studies on cypoviruses, which are members of the family
Reoviridae, show that only ten instead of twelve polymerase complexes are visible in each parti-
cle [7,10], indicating that protein-RNA interactions also play an important role in genome
packaging in these multi-layered dsRNA viruses.

A secondary structure prediction of both segments of the hPBV genome by the program
ViennaRNA Package 2.0 [55] predicted that both PBV (+)strand RNA segments begin with an
AU-rich (~80%), RNA stem-loop structure (S7 Fig). The low melting temperature associated
with the AU-rich 5’-(+)UTR should facilitate the denaturation of the dsRNA genome into an
ssRNA template during the initiation of the transcription. We speculate that the specific bind-
ing of the hPBV polymerase to the 5’-(+)UTR may play two critical roles during the viral life
cycle. First, the 5’-(+)UTR may function as a recognition element to ensure the specific packag-
ing of the viral RNAs during virus assembly. Second, in the mature virion, this binding could
help to direct the 3'-end of the genomic (-)strand RNA into the template entry channel of the
RdRP to initiate the transcription (Fig 8). It has been reported that polymerases from members
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of the Reoviridae family utilize a 5’-cap binding activity to gain access to the 3’-end of the (-)
RNA template during transcription initiation [21]. PBV does not encode a capping enzyme,
and its genomic (+)strand RNA is not expected to have a cap. Nevertheless, the 5’-(+)UTR
sequence of the PBV genome could play a similar role as the reovirus mRNA cap to facilitate
transcription initiation and also to ensure that only the (-)strand RNA template is selectively
used as a template for viral mRNA production.

It is also worthwhile to point out that our recombinant hPBV capsid does not undergo pro-
teolytic cleavage as was previously reported for the rabbit PBV capsid, in which the first 65 resi-
dues of the capsid protein were removed from the assembled particles presumably due to self-
cleavage [34]. Expression of the hPBV CP without the structurally flexible N-terminal peptide
(corresponding to the first 65 residues in the rabbit PBV CP) produced recombinant capsids
that were indistinguishable from the WT capsid (Fig 6A). As the cleavage site residues are con-
served in the human PBV CPs, it is unclear whether the lack of proteolytic cleavage is due to
strain difference or perhaps the use of a different expression host (i.e. E. coli vs. insect cells).

Our findings lead us to propose a model for PBV assembly and genome replication in which
the RdRP first binds to one of the PBV positive-sense RNAs utilizing the AU-rich sequence
located at the 5'-(+)UTR (Fig 8). The same genome segment is also acted upon by the PBV CP
that is in the process of forming a virus capsid, most likely utilizing the highly flexible N-termi-
nal region of the protein [34]. The capsid then assembles around the two genome segments
which are bound to two separate RdRP molecules. Conversion of ssRNA to dsRNA occurs

Fig 8. Proposedmodel for hPBV RdRP replication (left) and transcription (right) inside the viral capsid. The hPBV RdRPmolecules are displayed in
green. The blue and red lines correspond to the (+) and (-)strand respectively with the nascent (+)strand RNA represented in purple (right). The 5’-terminal
stem loop structure is displayed in yellow. How exactly the two ssRNAmolecules interact with each other and also with the viral CP during assembly and
replication is not yet clear, as indicated by the questions marks in the figure on the left. The parental (+)strand RNA is separated from the template RNA
during transcription and directed towards a pore in the viral capsid (right).

doi:10.1371/journal.ppat.1005523.g008
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either in partially or fully assembled capsids resulting in transcriptionally active particles.
Within the capsid the 5’-(+)UTR binding to the RdRP facilitates template strand selection and
recognition during repeated transcription events. Transcription of the PBV genome segments
proceeds in a semi-conservative manner where the parental (+)strand is replaced by the newly
synthesized strand (Fig 5A, right). To fill in the gaps in our model, further experiments are
needed to elucidate how the RdRP recognizes the 5’-(+)UTR and to map the molecular signals
responsible for the specific packaging of the PBV genome by the viral CP. We expect that
future studies of the PBV will help to define a new paradigm for the assembly and replication
of small dsRNA viruses in which the viral RdRP most likely functions independently of the
viral capsid.

Materials and Methods

Cloning, Protein Expression, and Purification
The gene encoding the RdRP of the hPBV Hy005102 strain (534 aa, ~62 kDa with either N-ter-
minal or C-terminal 6xHis tag and without His-tag) was cloned into a pET28b(+)-vector
(Novagen). The corresponding UTRs were not included in the cloned sequence. The resulting
constructs were transformed into a Rosetta 2 strain of E. coli (Novagen) and expressed by iso-
propyl β-D-thiogalactopyranoside (IPTG) induction. The cells where then pelleted before
being resuspended and sonicated in a lysis buffer composed of 50 mM Tris-HCl pH 7.5, 500
mMNaCl, 10% glycerol, 5 mM imidazole, 5 mM β-mercaptoethanol, 20 μg/ml phenylmethyl-
sulfonyl fluoride (PMSF) or 1 mM Pefablock, 50 μg/ml ribonuclease A, and 10 μg/ml DNase 1.
When the RdRP was purified for activity assays glycerol, β-mercaptoethanol and ribonuclease
A were omitted and lysozyme was included. The lysate was clarified by centrifugation at 20,000
×g for 60 minutes. The hPBV histidine tagged RdRPs were purified using a nickel-NTA
(Thermo Fischer Scientific), HiTrap Heparin HP, and a Superdex 200 size exclusion column
(GE Healthcare Life Sciences). The RdRP was eluted from the Superdex column in a buffer
composed of 50 mM Tris-HCl pH 7.5, 300 mMNaCl, 10% v/v glycerol, 1 mM EDTA, 1 mM
NaN3, and 5 mM β-mercaptoethanol. The purified RdRP was concentrated to 10 mg/ml for
crystallization. When the RdRP was purified for the activity assays the Superdex column was
omitted and the polymerase was stored in a buffer composed of 50% (v/v) glycerol, 50 mM
Tris-HCl pH 8.0, 0.1 mM EDTA, 0.1% Triton X-100, ~150 mMNaCl at -20°C. The ΔLOOP
RdRP was expressed and purified using the same protocol as the WT protein. For the untagged
RdRP used for activity assays, a similar protocol was adopted except that the Ni-NTA-column
was not used and HiTrap Q HP column purification step was added before the Heparin HP
column purification (GE Healthcare).

For structure determination, the selenomethionine (SeMet) labeled RdRP was obtained by
expressing the protein in M9 minimal media containing SeMet and a mixture of six other
amino acids to prevent methionine synthesis [70]. The SeMet labeled protein was expressed
and purified using the same protocol as the native protein.

Crystallization and Data Collection
Crystals of the N-terminally histidine tagged hPBV RdRP were obtained by the hanging drop
vapor diffusion method. The crystallization drop contained 1.5 μl of the RdRP solution and
0.5 μl of the mother liquor solution composed of 200 mM sodium acetate, 100 mM sodium
cacodylate pH 6.5, and 30% (w/v) polyethylene glycol (PEG) 8000. Crystals appeared after
incubation at 20°C for about 3 days and grew to full size (80 x 200 x 70 μm3) in approximately
a week. The crystals were then transferred into a cryoprotectant solution (30% (v/v) glycerol,
200 mM sodium acetate, 100 mM sodium cacodylate pH 6.5, 30% (w/v) PEG 8000) and flash
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frozen in liquid nitrogen. The crystals were sent for data collection at the Beamline 4.2.2 at the
Advanced Light Source, Lawrence Berkeley National Laboratory. The data were reduced and
scaled using HKL2000 (Table 1) [71].

Structure Determination
The heavy atom sites and experimental phases were determined by the AutoSol Wizard in the
PHENIX software suite [72]. The protein model was built using PHENIX Autobuild, manually
adjusted using COOT [73], and refined with phenix.refine. All of the structures presented were
prepared using the program PYMOL unless otherwise specified (The PyMOLMolecular Graph-
ics System, Version 1.2r3pre, Schrödinger, LLC). The coordinates have been deposited at the Pro-
tein Data Bank (PDB ID 5I61 and 5I62 for the full-length and ΔLoop RdRP, respectively).

Production of RNA Molecules
The plasmids used for ssRNA and dsRNA production are presented in S2 Table. The full-
length hPBV genome segment 2 (hPBV2) in a pMA-RQ-plasmid was synthesized by Life Tech-
nologies. The ϕ6 and hPBV specific ssRNAs were prepared by in vitro transcription using the
T7 RNA polymerase and complementary DNA templates amplified by polymerase chain reac-
tion (PCR). The primers used for hPBV2-specific cDNA production were hPBV2_T7_Forward
(5’ CGCGTAATACGACTCACTATAGTAAAATTTTCGAATTTTATAATAATTAAG) and
hPBV2_Reverse (5’ GCAGTTGGGACTGTTAGTCCCAATG) as well as hPBV2_Forward (5’
GTAAAATTTTCGAATTTTATAATAATTAAG) and hPBV2_T7_Reverse (5’ CGCGTAA
TACGACTCACTATAGCAGTTGGGACTGTTAGTCCCAATG) for (+)strand and (-)strand
ssRNA production, respectively. For ϕ6 specific cDNA production primers T7-1 and 3’end
[74] were used. For the production of the truncated PBV (+)strand ssRNAs the hPBV2_T7_
Forward primer was replaced with PBV2_T7_5'_34 (5’ CGCGTAATACGACTCACTATAGG
AGTTTAATAGTTTATCACAACTTAAAAGTG) or PBV2_T7_5'_646 (5’ CGCGTAATAC
GACTCACTATAGGGTGGCGAGGCCAGGAG) for Δ1–33 and Δ1–645, respectively. The
produced ssRNAs were purified using chloroform extraction and successive precipitations
with 4 M LiCl and 0.3 M sodium acetate, pH 6.5. The ϕ6 and hPBV specific ssRNAs were con-
verted to dsRNA using the ϕ6 RdRP as described in [74]. The reaction mixtures were incubated
for 1–3 hours at 30°C and the dsRNA was purified from the ssRNA by stepwise precipitation
with 2 M and 4 M LiCl as described previously [75]. The ϕ6 genomic dsRNA was purified
using Trizol/chloroform (5:1) extraction followed by successive precipitations with 44% (v/v)
isopropanol, 4 M LiCl, and 0.3 M sodium acetate pH 6.3. The purified RNA was washed with
cold 70% (v/v) ethanol and dissolved to sterile Milli-Q water.

RdRP Activity Assays
The replication, transcription and TNTase activities of the hPBV RdRP were assayed in 6%
(w/v) PEG 4000, 20 mMNH4Ac, 0.1 mM EDTA, 2 mMMgCl2, 0.1% (v/v) Triton X-100,
50 mMHEPES-KOH pH 7.5 and 0.4 U/μl RNase inhibitor RiboLock (Thermo Scientific), typi-
cally in 10 μl reaction volumes, using 55 nM concentrations of the WT or ΔLOOP polymerase
and equimolar amounts of the RNA strands. The conditions were not stringent since PBV
RdRP exhibited replication and transcription activity also in different divalent cation condi-
tions (MgCl2 and MnCl2) and NTP concentrations. When back-priming and transcription
time course reactions were assayed the RdRP amount was increased eight fold (without chang-
ing the molarity of the template RNA). A final concentration of 0.2 mM NTPs was used in the
replication and transcription reactions. The TNTase activity was assayed in the presence of
0.03 μMUTP. For the identification of newly synthetized RNAs the reactions were
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supplemented with (α-33P) labeled UTP (0.1 μCi/μl reaction, Perkin-Elmer, 3000 Ci/mmol) or
(γ-32P) labeled GTP (0.2–0.3 μCi/μl reaction, Perkin-Elmer, 6000 Ci/mmol). The reactions
were incubated for 1 hour at 37°C and stopped with the addition of 2×U loading buffer (8 M
Urea, 10 mM EDTA, 0.2% (w/v) SDS, 6% (v/v) glycerol, 0.05% (w/v) bromophenol blue, 0.05%
(w/v) xylene cyanol). For the evaluation of the back-priming activity, the reaction products
were boiled for 3 minutes to denature the sample. The reaction mixtures were analyzed by gel
electrophoresis in 0.8 or 1.2% (w/v) agarose. The gels were dried and the signals were collected
on imaging plates (Fujifilm), which were subsequently scanned using Typhoon TRIO Imager
(GE Healthcare). Quantification was done using AIDA Image Analyzer.

Co-expression Experiments
The gene encoding the CP of the hPBV Hy005102 strain (552 aa, 62 kDa) was cloned into a
pET19b(+) vector without the corresponding UTRs. This construct was co-transformed along
with the hPBV RdRP gene in a pET28b(+) vector into a Rosetta 2 strain of E. coli. The expres-
sion of both proteins (i.e. untagged CP and His-tagged RdRP) was then induced by the addition
of IPTG. The cells were pelleted, resuspended, sonicated, and clarified in as described for the
WT RdRP. After clarification, the supernatant was run through a nickel-NTA column to
remove any free RdRP. The VLPs were subsequently purified using density gradient ultracen-
trifugation in a CsCl gradient of 1.1–1.4 g/cm3. The ultracentrifugation was performed using a
SW41 Ti rotor (Beckman Coulter) at 35,000 rpm for 6 hours, after which the light-scattering
VLP-zone was collected. Western blots were carried out using an anti-hPBV CP antibody
obtained from Pacific Immunology (Ramona, CA, US) and an anti-6xHis antibody obtained
from ThermoFisher (Houston, TX, US). VLP formation was confirmed using TEM (JEOL
2010, Japan) as previously described [76].

Gel Shift Assays
The RNA oligos for the gel shift assays were commercially purchased from Sigma-Aldrich. The
three RNA oligonucleotides used for these experiments were the PBV 5’-(+)UTR (5’-GUAAAAU
UUUCGAAUUUUAU-3’), PBV 3’-(+)UTR (5’-GGACUAACAGUCCCAACUGC-3’), and a
nonsensical CA repeat (5’-CACACACACACACACACACA-3’). The two PBV2+ ssRNAmole-
cules, including the full-length PBV2+ and a deleted version PBV2+(Δ1–645), were made by in
vitro transcription as described above. RNA oligos and PBV2+ ssRNAmolecules were labeled
with γ-32P-ATP using T4 polynucleotide kinase (New England Biolabs) at 37°C for 30 minutes.
The labeling was halted by the addition of 5 μl of 500 mM EDTA. The labeled oligonucleotides
were then purified and desalted using a Sephadex G-50 Nick column (GE Life Sciences). The gel
shift assays were conducted in 50 mM Tris-HCl pH 7.5, 50 mMKCl, 1 mMNaN3, 5 mM β-mer-
captoethanol, and 10% (v/v) glycerol. A 1 nM concentration of 32P-labeled RNA was incubated
with increasing concentrations of either theWT or the ΔLOOP hPBV RdRP for 30 min at room
temperature. The samples were then loaded onto a 15% (w/v) native polyacrylamide gel and run
at 50 V for 4 hours. The polyacrylamide gel setup was placed in an ice bath during the experi-
ments to minimize heating. The radioactive RNA was visualized by phosphorimaging using the
FujiFilm FLA-5000 imager and quantified using the program ImageGuage v4.0. The fraction of
the RNA bound was then calculated as the amount of the bound RNA divided by the sum of the
total RNA and plotted versus the corresponding concentration of the protein.

Supporting Information
S1 Fig. Gel filtration chromatograms of the WT and ΔLOOP hPBV RdRPs. The elution pro-
files of the WT and ΔLOOP RdRPs are displayed in red and blue, respectively. The elution
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positions of three reference proteins and their relative molecular weights are indicated above.
(TIF)

S2 Fig. Multiple sequence alignment for mammalian and avian PBV polymerases. (A)
Alignment of ten polymerase sequences from PBV infecting various hosts. As indicated by the
color bar, conserved regions are shown in pink while poorly conserved regions are shown in
purple. The seven polymerase motifs are highlighted in black boxes. The six highly variable
regions are shown in blue boxes. Secondary structure assignments based on the hPBV poly-
merase are included and the coloring schedule is the same as in Fig 1. (B) The six highly vari-
able regions mapped onto the hPBV polymerase structure. The variable regions are numbered
from the N-terminus and their corresponding colors are indicated at the bottom.
(TIF)

S3 Fig. RNA synthesis activities by hPBV RdRP proteins with and without fusion tags.
Starting from the left are hPBV RdRP proteins with an N-terminal his-tag, a C-terminal his-
tag, and without any fusion tag. The RNA synthesis activities were assayed in the presence of
(α-33P) labeled UTP using three RNA templates: PBV2+ and PBV2- ssRNAs as well as PBV2
dsRNA. The main radiolabeled products detected were PBV2 dsRNA as shown on the left.
(TIF)

S4 Fig. RNA transcription time course by the hPBV RdRP. Reaction products were collected
from 0 minute to 240 minutes after reaction started. Templates used were the ϕ6 genomic
RNA including RNA segments of three distinct sizes (L, M, and S). Transcription products
made by ϕ6 RdRP were included in the first lane for comparison. The expected positions of
dsRNA (L, M, S) and ssRNA (l+, m+, s+) products are indicated on the left of the gel.
(TIF)

S5 Fig. The effect of terminal sequence on the transcription activity of the WT hPBV
RdRP. The RNA templates applied are indicated at the bottom and the mobility of the RNA
products on the left. The amount of the in vitro produced ϕ6-specific dsRNA (lanes 2 to 5) was
approximately one third of the amount of the ϕ6 genomic dsRNA (lane 1). The 3'-terminal
sequences of the transcription (-)strand templates are shown at the bottom. Additional termi-
nal sequences of ϕ6 genomic RNA can be found in S1 Table.
(TIF)

S6 Fig. Relative template usage of the hPBV RdRP. (a) RNA replication using ssRNA tem-
plates. RdRP activity was tested using PBV2+, ϕ6 s+, and a mixture of PBV2+ with ϕ6 s+. Equi-
molar amounts of each ssRNA and RdRP were applied in the competition reaction (3rd lane).
(b) RNA transcription using dsRNA templates. RdRP activity was tested using PBV2, ϕ6 S, ϕ6
L, and two mixtures of PBV2 with either ϕ6 S or ϕ6 L genomic segment. In the competition
reactions (4th and 5th lanes) the amount of each RNA template was one-fourth of the equimolar
amount of the RdRP. The mobilities of the expected dsRNA reaction products are indicated on
the left.
(TIF)

S7 Fig. Predicted secondary structure of the hPBV genomic (+)strand sequences. Left,
PBV1+. Right, PBV2+. Both 5’ and 3’-ends of the RNA molecules are labeled. The predicted
stem-loop structures at the 5’-end are highlighted in blue ovals.
(TIF)

S1 Table. Terminal sequences of utilized viral genomic segments.
(TIF)
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S2 Table. Viral RNA expression constructs.
(TIF)

S1 References. Supplemental references.
(TIF)
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