57,534 research outputs found

    Recent progress in random metric theory and its applications to conditional risk measures

    Full text link
    The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures. This paper includes eight sections. Section 1 is a longer introduction, which gives a brief introduction to random metric theory, risk measures and conditional risk measures. Section 2 gives the central framework in random metric theory, topological structures, important examples, the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals. Section 3 gives several important representation theorems for random conjugate spaces. Section 4 gives characterizations for a complete random normed module to be random reflexive. Section 5 gives hyperplane separation theorems currently available in random locally convex modules. Section 6 gives the theory of random duality with respect to the locally L0L^{0}-convex topology and in particular a characterization for a locally L0L^{0}-convex module to be L0L^{0}-pre-barreled. Section 7 gives some basic results on L0L^{0}-convex analysis together with some applications to conditional risk measures. Finally, Section 8 is devoted to extensions of conditional convex risk measures, which shows that every representable LL^{\infty}-type of conditional convex risk measure and every continuous LpL^{p}-type of convex conditional risk measure (1p<+1\leq p<+\infty) can be extended to an LF(E)L^{\infty}_{\cal F}({\cal E})-type of σϵ,λ(LF(E),LF1(E))\sigma_{\epsilon,\lambda}(L^{\infty}_{\cal F}({\cal E}), L^{1}_{\cal F}({\cal E}))-lower semicontinuous conditional convex risk measure and an LFp(E)L^{p}_{\cal F}({\cal E})-type of Tϵ,λ{\cal T}_{\epsilon,\lambda}-continuous conditional convex risk measure (1p<+1\leq p<+\infty), respectively.Comment: 37 page

    A Fast DOA Estimation Algorithm Based on Polarization MUSIC

    Get PDF
    A fast DOA estimation algorithm developed from MUSIC, which also benefits from the processing of the signals' polarization information, is presented. Besides performance enhancement in precision and resolution, the proposed algorithm can be exerted on various forms of polarization sensitive arrays, without specific requirement on the array's pattern. Depending on the continuity property of the space spectrum, a huge amount of computation incurred in the calculation of 4-D space spectrum is averted. Performance and computation complexity analysis of the proposed algorithm is discussed and the simulation results are presented. Compared with conventional MUSIC, it is indicated that the proposed algorithm has considerable advantage in aspects of precision and resolution, with a low computation complexity proportional to a conventional 2-D MUSIC

    Why not Merge the International Monetary Fund (IMF) with the International Bank for Reconstruction and Development (World Bank)

    Get PDF
    Motivation: Cellular Electron CryoTomography (CECT) is an emerging 3D imaging technique that visualizes subcellular organization of single cells at sub-molecular resolution and in near-native state. CECT captures large numbers of macromolecular complexes of highly diverse structures and abundances. However, the structural complexity and imaging limits complicate the systematic de novo structural recovery and recognition of these macromolecular complexes. Efficient and accurate reference-free subtomogram averaging and classification represent the most critical tasks for such analysis. Existing subtomogram alignment based methods are prone to the missing wedge effects and low signal-to-noise ratio (SNR). Moreover, existing maximum-likelihood based methods rely on integration operations, which are in principle computationally infeasible for accurate calculation. Results: Built on existing works, we propose an integrated method, Fast Alignment Maximum Likelihood method (FAML), which uses fast subtomogram alignment to sample sub-optimal rigid transformations. The transformations are then used to approximate integrals for maximum-likelihood update of subtomogram averages through expectation-maximization algorithm. Our tests on simulated and experimental subtomograms showed that, compared to our previously developed fast alignment method (FA), FAML is significantly more robust to noise and missing wedge effects with moderate increases of computation cost. Besides, FAML performs well with significantly fewer input subtomograms when the FA method fails. Therefore, FAML can serve as a key component for improved construction of initial structuralmodels frommacromolecules captured by CECT
    corecore