78 research outputs found

    Complete mitochondrial genomes from the ferns \u3ci\u3eOphioglossum californicum\u3c/i\u3e and \u3ci\u3ePsilotum nudum\u3c/i\u3e are highly repetitive with the largest organellar introns

    Get PDF
    Currently, complete mitochondrial genomes (mitogenomes) are available from all major land plant lineages except ferns. Sequencing of fern mitogenomes could shed light on the major evolutionary transitions that established mitogenomic diversity among extant lineages. In this study, we generated complete mitogenomes from the adder’s tongue fern (Ophioglossum californicum) and the whisk fern (Psilotum nudum). The Psilotum mitogenome (628 kb) contains a rich complement of genes and introns, some of which are the largest of any green plant organellar genome. In the Ophioglossum mitogenome (372 kb), gene and intron content is slightly reduced, including the loss of all four mitochondrial ccm genes. Transcripts of nuclear Ccm genes also were not detected, suggesting loss of the entire mitochondrial cytochrome c maturation pathway from Ophioglossum. Both fern mitogenomes are highly repetitive, yet they show extremely low levels of active recombination. Transcriptomic sequencing uncovered ~1000 sites of C-to-U RNA editing in both species, plus a small number (\u3c 60) of U-to-C edit sites. Overall, the first mitochondrial genomes of ferns show a mix of features shared with lycophytes and/or seed plants and several novel genomic features, enabling a robust reconstruction of the mitogenome in the common ancestor of vascular plants

    Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates

    Get PDF
    Rates of nucleotide substitution were previously shown to be several times slower in the plastid inverted repeat (IR) compared with single-copy (SC) regions, suggesting that the IR provides enhanced copy-correction activity. To examine the generality of this synonymous rate dependence on the IR, we compared plastomes from 69 pairs of closely related species representing 52 families of angiosperms, gymnosperms, and ferns. We explored the breadth of IR boundary shifts in land plants and demonstrate that synonymous substitution rates are, on average, 3.7 times slower in IR genes than in SC genes. In addition, genes moved from the SC into the IR exhibit lower synonymous rates consistent with other IR genes, while genes moved from the IR into the SC exhibit higher rates consistent with other SC genes. Surprisingly, however, several plastid genes from Pelargonium, Plantago, and Silene have highly accelerated synonymous rates despite their IR localization. Together, these results provide strong evidence that the duplicative nature of the IR reduces the substitution rate within this region. The anomalously fast-evolving genes in Pelargonium, Plantago, and Silene indicate localized hypermutation, potentially induced by a higher level of error-prone double-strand break repair in these regions, which generates substitutional rate variation

    Multiple origins of endosymbionts in Chlorellaceae with no reductive effects on the plastid or mitochondrial genomes

    Get PDF
    Ancient endosymbiotic relationships have led to extreme genomic reduction in many bacterial and eukaryotic algal endosymbionts. Endosymbionts in more recent and/or facultative relationships can also experience genomic reduction to a lesser extent, but little is known about the effects of the endosymbiotic transition on the organellar genomes of eukaryotes. To understand how the endosymbiotic lifestyle has affected the organellar genomes of photosynthetic green algae, we generated the complete plastid genome (plastome) and mitochondrial genome (mitogenome) sequences from three green algal endosymbionts (Chlorella heliozoae, Chlorella variabilis and Micractinium conductrix). The mitogenomes and plastomes of the three newly sequenced endosymbionts have a standard set of genes compared with free-living trebouxiophytes, providing no evidence for functional genomic reduction. Instead, their organellar genomes are generally larger and more intron rich. Intron content is highly variable among the members of Chlorella, suggesting very high rates of gain and/or loss of introns during evolution. Phylogenetic analysis of plastid and mitochondrial genes demonstrated that the three endosymbionts do not form a monophyletic group, indicating that the endosymbiotic lifestyle has evolved multiple times in Chlorellaceae. In addition, M. conductrix is deeply nested within the Chlorella clade, suggesting that taxonomic revision is needed for one or both genera

    Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Get PDF
    BACKGROUND: Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. RESULTS: In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. CONCLUSIONS: Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution

    Complete plastid genomes from \u3ci\u3eOphioglossum californicum, Psilotum nudum,\u3c/i\u3e and \u3ci\u3eEquisetum hyemale\u3c/i\u3e reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Get PDF
    Background: Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. Results: In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. Conclusions: Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution

    Complete plastid genomes from \u3ci\u3eOphioglossum californicum, Psilotum nudum,\u3c/i\u3e and \u3ci\u3eEquisetum hyemale\u3c/i\u3e reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Get PDF
    Background: Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. Results: In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. Conclusions: Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution

    MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response

    Full text link
    Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains relatively unexplored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT with the frozen LLaMA language model, bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q&A datasets, we created the MusicInstruct (MI) dataset from MusicCaps, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs. Our introduced dataset enables notable advancements beyond previous ones

    Predominant and Substoichiometric Isomers of the Plastid Genome Coexist within Juniperus Plants and Have Shifted Multiple Times during Cupressophyte Evolution

    Get PDF
    Most land plant plastomes contain two copies of a large inverted repeat (IR) that promote high-frequency homologous recombination to generate isomeric genomic forms. Among conifer plastomes, this canonical IR is highly reduced in Pinaceae and completely lost from cupressophytes. However, both lineages have acquired short, novel IRs, some of which also exhibit recombinational activity to generate genomic structural diversity. This diversity has been shown to exist between, and occasionally within, cupressophyte species, but it is not known whether multiple genomic forms coexist within individual plants. To examine the recombinational potential of the novel cupressophyte IRs within individuals and between species, we sequenced the plastomes of four closely related species of Juniperus. The four plastomes have identical gene content and genome organization except for a large 36 kb inversion between approximately 250 bp IR containing trnQ-UUG. Southern blotting showed that different isomeric versions of the plastome predominate among individual junipers, whereas polymerase chain reaction and high-throughput read-pair mapping revealed the substoichiometric presence of the alternative isomeric form within each individual plant. Furthermore, our comparative genomic studies demonstrate that the predominant and substoichiometric arrangements of this IR have changed several times in other cupressophytes as well. These results provide compelling evidence for substoichiometric shifting of plastomic forms during cupressophyte evolution and suggest that substoichiometric shifting activity in plastid genomes may be adaptive

    LyricWhiz: Robust Multilingual Zero-shot Lyrics Transcription by Whispering to ChatGPT

    Full text link
    We introduce LyricWhiz, a robust, multilingual, and zero-shot automatic lyrics transcription method achieving state-of-the-art performance on various lyrics transcription datasets, even in challenging genres such as rock and metal. Our novel, training-free approach utilizes Whisper, a weakly supervised robust speech recognition model, and GPT-4, today's most performant chat-based large language model. In the proposed method, Whisper functions as the "ear" by transcribing the audio, while GPT-4 serves as the "brain," acting as an annotator with a strong performance for contextualized output selection and correction. Our experiments show that LyricWhiz significantly reduces Word Error Rate compared to existing methods in English and can effectively transcribe lyrics across multiple languages. Furthermore, we use LyricWhiz to create the first publicly available, large-scale, multilingual lyrics transcription dataset with a CC-BY-NC-SA copyright license, based on MTG-Jamendo, and offer a human-annotated subset for noise level estimation and evaluation. We anticipate that our proposed method and dataset will advance the development of multilingual lyrics transcription, a challenging and emerging task.Comment: 9 pages, 2 figures, 5 tables, accepted by ISMIR 202

    Predominant and Substoichiometric Isomers of the Plastid Genome Coexist within Juniperus Plants and Have Shifted Multiple Times during Cupressophyte Evolution

    Get PDF
    Abstract Most land plant plastomes contain two copies of a large inverted repeat (IR) that promote high-frequency homologous recombination to generate isomeric genomic forms. Among conifer plastomes, this canonical IR is highly reduced in Pinaceae and completely lost from cupressophytes. However, both lineages have acquired short, novel IRs, some of which also exhibit recombinational activity to generate genomic structural diversity. This diversity has been shown to exist between, and occasionally within, cupressophyte species, but it is not known whether multiple genomic forms coexist within individual plants. To examine the recombinational potential of the novel cupressophyte IRs within individuals and between species, we sequenced the plastomes of four closely related species of Juniperus. The four plastomes have identical gene content and genome organization except for a large 36 kb inversion between approximately 250 bp IR containing trnQ-UUG. Southern blotting showed that different isomeric versions of the plastome predominate among individual junipers, whereas polymerase chain reaction and high-throughput read-pair mapping revealed the substoichiometric presence of the alternative isomeric form within each individual plant. Furthermore, our comparative genomic studies demonstrate that the predominant and substoichiometric arrangements of this IR have changed several times in other cupressophytes as well. These results provide compelling evidence for substoichiometric shifting of plastomic forms during cupressophyte evolution and suggest that substoichiometric shifting activity in plastid genomes may be adaptive
    • …
    corecore