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Abstract

Most land plant plastomes contain two copies of a large inverted repeat (IR) that promote high-frequency homologous recombina-

tion to generate isomeric genomic forms. Among conifer plastomes, this canonical IR is highly reduced in Pinaceae and completely

lost from cupressophytes. However, both lineages have acquired short, novel IRs, some of which also exhibit recombinational activity

to generate genomic structural diversity. This diversity has been shown to exist between, and occasionally within, cupressophyte

species, but it is not known whether multiple genomic forms coexist within individual plants. To examine the recombinational

potential of the novel cupressophyte IRs within individuals and between species, we sequenced the plastomes of four closely related

species of Juniperus. The four plastomes have identical gene content and genome organization except for a large 36 kb inversion

between approximately 250 bp IR containing trnQ-UUG. Southern blotting showed that different isomeric versions of the plastome

predominate among individual junipers, whereas polymerase chain reaction and high-throughput read-pair mapping revealed

the substoichiometric presence of the alternative isomeric form within each individual plant. Furthermore, our comparative genomic

studies demonstrate that the predominant and substoichiometric arrangements of this IR have changed several times in other

cupressophytes as well. These results provide compelling evidence for substoichiometric shifting of plastomic forms during cupres-

sophyte evolution and suggest that substoichiometric shifting activity in plastid genomes may be adaptive.

Key words: plastid genome, cupressophytes, Juniperus, inverted repeat, substoichiometric shifting.

Introduction

The plastid genome (plastome) of photosynthetic land plants is

generally 120–160 kb in size with a quadripartite structure

involving two inverted repeat (IR) sequences that separate

the rest of the genome into large and small single-copy re-

gions (Wicke et al. 2011; Jansen and Ruhlman 2012). The IR in

land plants is typically 10–30 kb in length and duplicates the

ribosomal RNA cluster and other genes, although some spe-

cies have much larger or smaller IRs and others have no IR at all

(Wicke et al. 2011; Jansen and Ruhlman 2012). When the IR is

present, homologous recombination occurs between the two

copies causing frequent “flip-flop” inversion of the interven-

ing single copy regions, such that the two isomeric genomic

orientations coexist at roughly equal frequency within a single

plant (Palmer 1983; Stein et al. 1986).

Among gymnosperms, the IR ranges from large to absent.

Species in Gnetales, Cycadales, and Ginkgoales have retained

a canonical IR ranging from 17.3 to 25.1 kb (Wu et al. 2007,

2009; Lin et al. 2012). In Pinaceae, the IR is highly reduced to

include only the full trnI-CAU gene and, in most species,

GBE
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a portion of the psbA gene (Lin et al. 2010; Wu et al. 2011).

This reduced Pinaceae IR has lost the ability to generate inver-

sions by homologous recombination (Wu et al. 2011).

However, several novel, Pinaceae-specific repeats are recom-

binationally active, resulting in rearrangement events that

have generated distinct interspecific and intraspecific genomic

configurations in Pinaceae (Tsumura et al. 2000; Wu et al.

2011). Although these results clearly demonstrated that

recombinant forms exist among individuals within a species,

they did not establish whether both genomic forms coexist

within an individual plant. Southern blot analyses of individ-

uals failed to detect the presence of the isomeric form for any

species (Tsumura et al. 2000), indicating that the genomes

exist predominantly or fully in one arrangement within a

single plant. However, polymerase chain reaction (PCR)-

based approaches using DNA extracted from single plants

were sometimes (depending on PCR parameters) able to

detect the isomeric form (Tsumura et al. 2000; Wu et al.

2011), suggesting that it may be present within an individual,

albeit at a substoichiometric level. Alternatively, the rear-

ranged forms detected by PCR may be artifacts arising from

PCR-mediated recombination events (Lahr and Katz 2009;

Alverson et al. 2011).

Unlike other gymnosperms, cupressophytes have lost one

copy of the ancestral land plant IR during evolution, but, like

Pinaceae, they have acquired one or more short, novel IRs

(Hirao et al. 2008; Wu and Chaw 2013; Yi et al. 2013). In

Cephalotaxus oliveri, a 544-bp IR that duplicates the trnQ-

UUG gene was inferred to be recombinationally active be-

cause both isomeric forms were detected within a single indi-

vidual by PCR (Yi et al. 2013). In Cryptomeria japonica and

Taiwania cryptomerioides, however, this trnQ-containing IR is

only approximately 280 bp and the rearranged form was

undetectable by PCR (Yi et al. 2013). Because these results

were obtained using a PCR-based approach, it is unclear

whether the positive results were due to PCR-mediated re-

combination and whether the negative results were due to

nonoptimal PCR conditions. Thus, as in Pinaceae, it is uncer-

tain whether both genomic isomers coexist in individual

cupressophyte plants due to homologous recombination at

intermediately sized IRs.

The repeat-mediated rearrangement activity in conifer plas-

tomes, coupled with the possible presence of substoichio-

metric isomeric forms within individuals, is reminiscent of

the well-known process of substoichiometric shifting (SSS)

that affects angiosperm mitochondrial genomes (Small et al.

1987). SSS changes the relative ratio of predominant and

substoichiometric forms of a plant mitochondrial ge-

nome through recombination at intermediately sized repeats

(~50–1,000 bp), and possibly also by selective amplification of

the substoichiometric form (Woloszynska 2010; Arrieta-

Montiel and Mackenzie 2011). Repeat-mediated recombina-

tional activity can be increased by mutations in nuclear factors

such as MSH1, OSB1, and RECA3, suggesting that SSS is

under nuclear control (Zaegel et al. 2006; Shedge et al.

2007). Mitochondrial SSS activity can create or amplify open

reading frame copy numbers, alter gene expression patterns,

and lead to phenotypic effects, at least some of which may be

evolutionarily adaptive (Arrieta-Montiel and Mackenzie 2011).

To date, SSS has not been reported for the plastome. If

plastomic SSS exists, repeat-mediated recombination would

have the potential to cause functional genomic changes

with phenotypic consequences. To examine the issue of

repeat-mediated rearrangement and the presence of substoi-

chiometric isomeric arrangements in conifers, we sequenced

the plastomes from four closely related species in genus

Juniperus. For this work, we collected tissue from single indi-

viduals to examine whether different plastomic forms coexist

within individual plants. In addition, while we used PCR-based

approaches to examine this issue, we also examined mapping

information from paired-end reads generated by next-gener-

ation sequencing techniques, which should avoid potential

issues with PCR-mediated recombination artifacts (Alverson

et al. 2011). Comparative genomic analysis provided compel-

ling evidence for the existence of SSS in the plastome of juni-

pers and other cupressophytes.

Materials and Methods

DNA Extraction and Sequencing

Fresh leaf tissue was collected from a single individual of

Juniperus bermudiana (voucher Adams 11080), J. mono-

sperma (voucher Adams 13595), J. scopulorum (voucher

Adams 13594), and J. virginiana (voucher Adams 13549).

Vouchers were deposited in the herbarium at Baylor

University (BAYLU). Total genomic DNA was extracted from

20 mg of silica-dried J. bermudiana material using the Qiagen

DNeasy Mini Kit (QIAGEN, Valencia, CA) and from 2 g tissue

for the other three species by use of a modified CTAB-based

protocol (Doyle JJ and Doyle JL 1987). Quality and quantity of

the extracted DNAs were examined by spectrophotometry

and agarose gel electrophoresis.

For J. bermudiana, long-range PCR products were ampli-

fied, pooled, and then sequenced at the University of Georgia

Sequencing Core Facility on the Illumina GAII platform. The

PCR products covered about 70% of the genome. The re-

maining 30% of the genome was filled by PCR and Sanger

sequencing. The other three DNAs were sequenced at the

Indiana University Bloomington Center for Genomics and

Bioinformatics Core Facility on the Illumina MiSeq platform,

generating approximately 10 million paired-end 250 bp reads

from an approximately 800 bp sequencing library for each

species.

Genome Assembly and Annotation

The C. japonica plastid genome (GenBank Acc.

No. NC_010548) was used as a reference to order the

Plastid Substoichiometric Shifting GBE
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J. bermudiana sequenced genome fragments in Geneious

version R6-1 (http://www.geneious.com/, last accessed

March 11, 2014). All potential rearrangements found in com-

parison with Cryptomeria were confirmed by additional

Sanger sequencing. The other three plastid genomes were

assembled by running Velvet version 1.2.03 (Zerbino and

Birney 2008) using different pairwise combinations of Kmer

values (51, 61, 71, 81, and 91) and expected coverage values

(50, 100, 200, 500, 1000, and 2000). Scaffolding was turned

off and the minimum coverage value was set to 10% of ex-

pected coverage. For each species, a single full-length contig

was recovered in at least three independent runs, and the

alignment consensus of three independent runs was taken

as the final consensus sequence. To validate the genome as-

semblies, Illumina reads were mapped onto the consensus

sequences with Bowtie version 2.0.0 beta 5 (Langmead and

Salzberg 2012) as described previously (Grewe et al. 2013).

Discrepancies were corrected using the sequence present in

the majority of mapped read sequences.

Protein-coding, ribosomal RNA, and transfer RNA genes in

the four juniper plastomes were initially annotated by use of

the DOGMA webserver (Wyman et al. 2004). DOGMA anno-

tations were manually checked by blast searches with ortho-

logous sequences from other Cupressaceae plastomes, and, in

some cases, by sequence alignment using MUSCLE version

3.8.31 (Edgar 2004).

Genome Structural Analyses

To compare plastome organization within cupressophytes, ge-

nomes from 8 representative species were aligned using

Mauve version 2.3.1 (Darling et al. 2010). For this analysis,

the start point of each genome was arbitrarily set as the

ycf2 start codon.

For Southern blotting, approximately 1mg of J. mono-

sperma, J. virginiana, and J. scopulorum DNA was digested

with restriction enzymes EcoRI and HindIII, separated on a

0.5% agarose gel, and transferred to nylon membrane fol-

lowing established procedures (Sambrook and Russell 2001).

Approximately 800 ng of PCR-derived probes were labeled

with Digoxigenin (DIG) using the DIG High Prime DNA

Labeling and Detection Starter Kit II following the manufac-

turer’s protocol (Roche, Mannheim, Germany). The mem-

brane was prehybridized in ULTRAhyb hybridization solution

(Life Technologies, Carlsbad, CA) for 4 h at 42 �C and then

hybridized in ULTRAhyb solution containing the DIG-labeled

probe overnight at 42 �C. The membrane was washed twice

in 2� saline-sodium citrate (SSC) + 0.1% sodium dodecyl sul-

phate (SDS) for 5 min at room temperature and then twice in

0.5� SSC + 0.1% SDS for 15 min at 65 �C. Hybridized probes

were detected with chemiluminescent substrate (CSPD)

ready-to-use according to the DIG High Prime DNA Labeling

and Detection Starter Kit II protocol. Subsequently, the

membrane was exposed to a photo film for 10 min prior to

development.

Primers for the variable cycle PCR analysis were designed in

genes flanking the Juniperus IR: rps4 (50-CCTGGTAAAGTTTTG

ABACG-30), psbK (50-CAAATGAAAAGCGGCATCG-30), chlB

(50-GTTCCAATATGAGCAGGACCAG-30), and trnL-UAA (50-G

TTTCCATACCAAGGCTC-30). PCR was performed with a

C1000 thermal cycler (Bio-Rad) using the following primer

combinations (rps4 + chlB, rps4 + trnL-UAA, psbK+chlB,

psbK+trnL-UAA) and GoTaq Flexi DNA Polymerase with sup-

plied reagents (Promega). Each reaction was 10ml in volume

and included 20 ng DNA. Reactions were amplified for 5, 10,

15, 20, 25, 30, or 35 cycles of denaturation (95 �C for 30 s),

annealing (55 �C for 1 min), and elongation (72 �C for 2 min).

All reactions also included an initial denaturation step (95 �C

for 2 min) and a final elongation step (72 �C for 5 min).

To quantify the relative frequency of the two isomeric geno-

mic forms, Illumina paired-end reads were mapped to the

genome using Bowtie 2 with default parameters. To avoid

any mapping ambiguity, reads were required to unambigu-

ously map to the nonrepetitive flanking sequences on either

sideof the repeats. Thiswaspossiblebecause theaverage insert

size of the sequencing libraries was approximately 800 bp,

which easily spanned the approximately 250 bp repeats. A

custom Perl script was used to count repeat-spanning read

pairs, enabling us to quantify the frequency of the repeat in

each possible genomic arrangement. Isomer frequencies were

calculatedbydividing the numberof readpairs that support the

alternative conformation by the total number of read pairs that

support either conformation. To ensure that the results of the

read-pairmappinganalysiswerenot theresultofcross-contam-

ination of the Illumina data sets, raw Illumina sequence reads

were aligned to three genomic regions that exhibited variability

among the Juniperus species. The variable genomic regions

were identified by manual inspection of a genomic alignment

generated by MAFFT (Katoh and Toh 2008) with default pa-

rameters. All Illumina sequence reads that could be mapped to

these genomic regions were extracted and then aligned to the

variable regions by MAFFT with default parameters.

Phylogenetic Analysis

Plastomes from 12 cupressophyte and 9 Pinaceae species

(supplementary table S1, Supplementary Material online)

were downloaded from GenBank or generated in this study.

To ensure annotation consistency among genomes, we per-

formed an all-against-all BlastN search of all protein-coding

genes from all species to identify missing genes or genes

with incorrect start or stop codon annotations. Genomes

with potentially missing or misannotated genes were manually

checked, and their annotations were corrected if the gene

could be identified or reannotated to improve consistency

among species. For petL of Picea morrisonicola and ndhB of

Cryptomeria, T. flousiana and Taxus, we used an upstream

Guo et al. GBE
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start codon to improve sequence similarity to orthologous

genes. For petD of Keteleeria, we used an upstream stop

codon. We identified numerous unannotated genes in Pinus

thunbergii (ccsA, cemA, petL, petN, psbZ, ycf1, ycf2, ycf3, and

ycf4), Podocarpus (psaI, psaJ, psaM, rpl20, rpl33, and rps18),

Pseudotsuga (psbA), and Taxus (psbZ, rps2, and rps12).

All 83 cupressophyte protein-coding genes were extracted

from the corrected annotations and then individually aligned

with MUSCLE version 3.8.31 (Edgar 2004) using default set-

tings. Alignments were filtered using Gblocks version 0.91b

(Castresana 2000) in DNA mode with relaxed parameters

(b4¼5 b5¼h). Filtered alignments were concatenated in

SequenceMatrix version 1.7.8 (Vaidya et al. 2011), producing

a final alignment of 68,497 bp. Maximum likelihood phyloge-

netic trees were constructed with the GTR+G substitution

model in RAxML version 7.2.8 (Stamatakis 2006). Tree robust-

ness was assessed by nonparametric bootstrapping with

1,000 replicates.

Results

Juniper Plastid Genome Size and Content

The plastomes of J. bermudiana, J. monosperma, J. scopu-

lorum, and J. virginiana are 127,659, 127,744, 127,774,

and 127,770 bp in length, respectively (fig. 1; supplementary

fig. S1, Supplementary Material online), which are similar to

the 127–146 kb sizes of other sequenced cupressophytes (Wu

and Chaw 2013). The four junipers have an identical set of 82

protein-coding genes, 4 ribosomal RNAs, 33 transfer RNAs,

and 18 introns. Notably, the rps16 gene contains frameshift

mutations indicating nonfunctionality, whereas the clpP gene

probably requires RNA editing to create a stop codon but is

otherwise intact and presumably functional. Overall, protein-

coding gene content is relatively stable among cupressophytes

(table 1). Gene content variation includes 1) loss of rpl32 from

Cephalotaxus; 2) pseudogenization of rps16 in Juniperus,

Taxus, and Podocarpus; 3) pseudogenization of clpP in

Cryptomeria, Cunninghamia, Taxus, and Podocarpus; 4) pseu-

dogenization of infA in Cunninghamia; and 5) pseudogeniza-

tion of ycf1 in Taxus. All sequenced cupressophytes lack the

ycf12 gene that is present in other gymnosperms.

Different Isomeric Plastome Arrangements Predominate
among Junipers

The four juniper genome assemblies have an identical organi-

zation except for a 36 kb inversion (fig. 1; supplementary fig.

S1, Supplementary Material online), such that the J. virginiana

and J. monosperma plastomes exist in one arrangement

(designated “A”), whereas J. scopulorum and J. bermudiana

exist in the inverted isomeric form (designated “B”). This in-

version segment is precisely flanked by the largest IR in the

four juniper plastomes (244 bp in J. monosperma and 257 bp

in the other three species) that fully duplicates the trnQ-UUG

gene. The presence of different isomeric forms among juni-

pers indicates that this approximately 250 bp trnQ-IR has pro-

moted homologous recombination activity in Juniperus, as

previously observed for the short IRs in Cephalotaxus and

some Pinaceae species (Wu et al. 2011; Yi et al. 2013).

To verify the interspecific variation of plastome arrange-

ments and to test for the presence of both arrangements

within an individual plant, we performed southern blot anal-

ysis using the IR sequence as a probe. Restriction sites sur-

rounding the IRs for the three examined juniper plastome

sequences are shown in figure 2A (J. bermudiana was not

examined because we lacked sufficient quantity of DNA). If

the assembled genomic arrangement is the only genomic

form within the single individual from each of the four species,

we would expect two restriction fragments (consistent in size

to the restriction maps in fig. 2A) to hybridize with the IR

probe. However, if both isomeric forms are present at a de-

tectable frequency within an individual plant, we would

expect hybridization to four different fragments (two that cor-

respond to the restriction maps in fig. 2A and two that cor-

respond to the inverted isomeric form). The southern blot

results show two hybridization signals for each plant

(fig. 2B), which corresponds to the restriction pattern expected

from figure 2A. These results indicate that the plastomes exist

predominantly or completely in the “A” arrangement within

the two J. monosperma and J. virginiana plants, whereas the

plastome of the J. scopulorum plant exists predominantly or

completely in the isomeric “B” arrangement, in agreement

with the genome assembly results.

The southern blot failed to detect both genomic forms

within the individual plants, but it is possible that the alterna-

tive forms are at a substoichiometric level that is too low to be

detectable by southern blotting. As an alternative approach,

we performed semiquantitative PCR with a variable number of

cycles to compare the relative frequency of the “A” and “B”

arrangements in the four Juniperus species (fig. 2C). From

these results, it is clear that all four reactions generate prod-

ucts for all four species. Second, it is also apparent that there

are minor differences in amplification efficiency between the

two PCR reactions for each arrangement (note for J. bermudi-

ana, J. scopulorum, and J. virginiana the earlier appearance of

psbK/chlB products compared with rps4/trnL products for the

“A” arrangement, and the earlier appearance of rps4/chlB

products compared with psbK/trnL products for the “B” ar-

rangement), After accounting for the minor differences in

amplification efficiency, the results indicate that “A” products

appear earlier than “B” products for J. monosperma and

J. virginiana, while “B” products appear earlier than “A”

products for J. bermudiana and J. scopulorum. Taken to-

gether, these PCR results confirm the predominant genomic

configuration for each species (“A” for J. monosperma and

J. virginiana; “B” for J. bermudiana and J. scopulorum).

Additionally, they suggest that the isomeric form is present

at a substoichiometric level within each individual plant from

Plastid Substoichiometric Shifting GBE
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each species. However, we cannot rule out the possibility that

PCR-mediated recombination is generating artifactual positive

results in the semiquantitative PCR results. It is also possible

that PCR-mediated recombination or in vivo asymmetric re-

combination is contributing to the observed differences in

amplification efficiency. Because quantitative PCR would be

expected to be equally prone to such recombinational issues,

we did not use this technique.

As another approach, studies of plant mitochondrial ge-

nomes have shown that substoichiometric recombinant

forms can be detected and quantified using high-throughput

read-pair mapping data (Alverson et al. 2011; Davila et al.

2011; Mower et al. 2012; Sloan et al. 2012). To test for the

substoichiometric presence of the isomeric plastomic arrange-

ment within an individual plant, we searched for Illumina

paired-end reads that mapped inconsistently to the predom-

inant genomic arrangement in J. monosperma, J. scopulorum

and J. virginiana (J. bermudiana was not tested because we

lacked paired-end sequencing data). For all three ex-

amined junipers, we found a small number of read pairs
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FIG. 2.—Analysis of IR arrangements in junipers. (A) Map of restriction enzyme digestion sites around the IR. EcoRI and HindIII digestion sites are indicated

by E and H. Solid lines were drawn to scale. Genomic distances between digestion sites and center of the repeats are shown. Repeats are depicted by the

solid boxes (not in scale). (B) Southern blot analysis of repeat arrangements. Sizes of each restriction fragment are shown on the left (in kilobases). (C) PCR

analysis of repeat arrangements at different cycle numbers. The “A reactions” and “B reactions” label the primer combinations designed to amplify products

from “A” and “B” plastomic arrangements. Numbers above the panels indicate PCR cycle number. (D) Relative frequencies of the isomeric genomic

arrangements based on read-pair mapping. Heights of open and solid bars indicate relative frequencies of “A” and “B” arrangements, respectively.

Table 1

Variation in Protein-Coding Gene Content among Cupressophytes

Juniperus Cryptomeria Taiwania Cunninghamia Cephalotaxus Taxus Podocarpus

78 genesa + + + + + + +

clpP + c + c + c c

infA + + + c + + +

rpl32 + + + + � + +

rps16 c + + + + c c

ycf1 + + + + + c +

ycf12 � � � � � � �

Total 82 82 83 81 82 80 81

aSeventy-eight genes include accD, atpA, atpB, atpE, atpF, atpH, atpI, ccsA, cemA, chlB, chlL, chlN, matK, ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ,
ndhK, petA, petB, petD, petG, petL, petN, psaA, psaB, psaC, psaI, psaJ, psaM, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ, rbcL,
rpl2, rpl14, rpl16, rpl20, rpl22, rpl23, rpl33, rpl36, rpoA, rpoB, rpoC1, rpoC2, rps2, rps3, rps4, rps7, rps8, rps11, rps12, rps14, rps15, rps18, rps19, ycf2, ycf3, and ycf4.
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that supported the isomeric genomic arrangement (fig. 2D).

For J. virginiana, there were 190 read pairs that spanned the

trnQ-containing IR copies, of which 186 pairs (97.9%) sup-

ported the predominant “A” arrangement while 4 pairs

(2.1%) supported the isomeric “B” arrangement. Similar cal-

culations showed that the isomeric plastomic arrangements

were present at 5.0% (6/119) frequency in J. scopulorum and

0.8% (1/132) frequency in J. monosperma. To ensure that

these low-frequency read pairs supporting the recombinant

conformation are not due to cross-contamination, we

mapped the raw reads from all three species to three variable

regions in the genomes (supplementary fig. S2,
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B
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K-UUU ψ-rps16 chlB Q-UUG T-UGU rps4 S-GGA S-GCU psbI psbK Q-UUG L-UAA F-GAA ndhD
K-UUU ψ-rps16 chlB Q-UUG psbK psbI S-GCU S-GGA rps4 T-UGU Q-UUG L-UAA F-GAA ndhD
K-UUU ψ-rps16 chlB Q-UUG psbK psbI S-GCU S-GGA rps4 T-UGU Q-UUG L-UAA F-GAA ndhD
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FIG. 3.—Cupressophyte plastome structural alignments. (A) Mauve alignments. The colored blocks represent collinear sequence blocks shared by all

plastomes. Blocks drawn below the horizontal line indicate sequences found in inverted orientation. The height of the colored bars within each block reflects

the level of sequence similarity among plastomes. Arrows indicate boundaries of the inversion segment and their associated letter (“A” or “B”) indicate the

orientation of the inversion relative to the flanking sequences, while an “X” indicates a novel flanking sequence. (B) Gene context of trnQ-IR. Light blue

shading indicates the inferred ancestral gene synteny of the original trnQ-UUG gene, while light yellow shading indicates the ancestral synteny of the location

of the second trnQ-UUG gene copy. Unshaded genes indicate a loss of synteny. An “x” indicates a missing gene. The phylogeny was based on currently

accepted relationships (Zhong et al. 2011; Mao et al. 2012; Adams and Schwarzbach 2013).
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Supplementary Material online). Of the 600 reads that were

mapped, all but one of the reads were matched to the ex-

pected species rather than to the other species, indicating that

there is very little cross-contamination in the data sets

(~0.17%).

Frequent Shifting of Isomeric Genomic Forms in
Cupressophytes

A homologous trnQ-containing IR is also present in other se-

quenced cupressophyte species from Cupressaceae,

Cephalotaxaceae, and Taxaceae. To examine the genomic ar-

rangement of the inversion segment among cupressophyte

plastomes, we aligned a representative set of genomes with

Mauve (fig. 3A). Most cupressophytes have the inversion seg-

ment in the “B” arrangement, except for the two Juniperus

species reported here and for Ce. oliveri, which exists predom-

inantly in the “A” arrangement based on previous PCR results

(Yi et al. 2013). The discontinuous presence of “A” and “B”

forms among cupressophytes indicates that the intervening

segment has inverted multiple times during cupressophyte

evolution. Although the “B” arrangement predominates in

cuppressophyte plastomes, inspection of the Podocarpus,

Gnetales, Pinaceae, Ginkgo and Cycas plastomes shows that

the ancestral gene orders of the two trnQ-UUG locations are

collinear with the “A” arrangement (fig. 3B).

To understand the evolution of plastid genome structure in

cupressophytes, we first determined the phylogenetic relation-

ships among the four juniper species and other sequenced

cupressophytes based on plastomic data. The resulting phylog-

eny (fig. 4) shows a monophyletic Juniperus clade in which J.

monosperma split earliest from other three species, as ex-

pected (Adams and Schwarzbach 2013), but relationships

among J. bermudiana, J. scopulorum, and J. virginiana were

not resolved. A closer relationship between J. bermudiana and

J. virginiana has weak bootstrap support (BS¼48%) in our

analysis, although previous analyses suggested a closer affinity

between J. virginiana and J. scopulorum (Adams and

Schwarzbach 2013). For other cupressophytes, the strongly

supported topology within Cupressaceae and among

the four families (Cephalotaxaceae, Cupressaceae,

Podocarpaceae, and Taxaceae) is fully congruent with currently

accepted organismal relationships (Mao et al. 2012; http://

www.mobot.org/MOBOT/research/APweb/, last accessed

March 11, 2014).

We used parsimony to map the origin of the trnQ-IR and

the changes in orientation of the inversion segment onto the

cupressophyte phylogeny (fig. 4). Based on the absence of this

IR in Podocarpus totara and its presence in all other examined

cupressophytes, we infer that the IR originated in the common

ancestor of Cupressaceae, Cephalotaxaceae, and Taxaceae

after they split from Podocarpaceae. Once the IR was estab-

lished, it is clear that the intervening segment has indeed in-

verted multiple times during cupressophyte evolution. Based

on the phylogenetic relationship of the four juniper species, at

least two inversion events must have occurred to generate the

distribution of arrangements. A minimum of two additional

inversions are further required to explain the variable inversion

arrangement in other cupressophytes. Given the number of

inversions already identified, it is conceivable that this parsi-

mony approach has underestimated the true number of in-

version events that occurred during cupressophyte
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Cunninghamia lanceolata “B”

Juniperus virginiana “A”

J. monosperma “A”

Cryptomeria japonica “B”

Cephalotaxus oliveri “A”

Taiwania cryptomerioides “B”

100

100

100

100

100

100

100

100

48

100

100

trnQ-IR
origin

A to B

A to B

B to A

B to A

Pinaceae “A”

A

FIG. 4.—Phylogenetic analysis of cupressophyte plastid genes. The tree was generated by maximum likelihood method of a data set containing 83

plastid protein genes from 21 conifers and was rooted on Pinaceae. Bootstrap values are given for each branch, including the <50% value for the

relationship among J. bermudiana, J. scopulorum, and J. virginiana. The “A” or “B” after each species indicates its plastome is completely or predominantly

oriented in the “A” or “B” genomic arrangement. The origin of the trnQ-IR and “A” type of genomic arrangement, as well as evolutionarily shifts between

“A” and “B” genomic arrangements, are mapped on branches.
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diversification. It is also possible that rearrangements have oc-

curred within species, which would increase the inferred

number of events further. Finally, it should be noted that

the inversion orientation has not been verified in some previ-

ously published species (T. flousiana, Cunninghamia

lanceolata, and Taxus mairei), which would alter the inferred

number and timing of rearrangement events. Importantly,

however, these uncertainties would not alter (and in most

cases would strengthen) our major conclusion of multiple

shifts between “A” and “B” arrangements during cupresso-

phyte evolution. Additional sampling of plastid genome struc-

tures and verification of previously published genomes will be

necessary to more fully examine this issue.

Notably, there are now plastomes from five species

(J. bermudiana, J. monosperma, J. scopulorum, J. virginiana,

and Ce. oliveri) with evidence for the substoichiometric pres-

ence of the alternative isomeric arrangement within a single

individual. Furthermore, by close inspection of the PCR results

for the C. japonica and T. cryptomerioides trnQ-IR arrange-

ments, we observe a very faint band for one of the alternative

genomic arrangements (supplementary fig. S4 in Yi et al.

2013), suggesting that these species may also contain the

isomeric form at a substoichiometric level. Thus, there is

weak to compelling evidence for substoichiometric isomeric

arrangements of the plastome in all seven cupressophyte spe-

cies whose structures have been examined. Importantly, the

predominant and substoichiometric plastomic arrangements

have changed several times during cupressophyte evolution,

which provides the first evidence for the process of SSS activity

in a plastid genome.

Discussion

Southern mapping studies of large repeats (>1,000 bp) in

plant organellar genomes have shown that all of the possible

genomic arrangements generated by repeat-mediated homol-

ogous recombination are present at roughly equal stoichiom-

etry (Palmer 1983; Palmer and Shields 1984; Stein et al. 1986;

Klein et al. 1994). These findings imply that high-frequency

homologous recombination maintains the various repeat ar-

rangements in stoichiometric equilibrium (Lonsdale et al.

1988; Woloszynska 2010). Low-frequency recombination at

intermediately sized repeats (~50–1,000 bp) is well docu-

mented in plant mitochondrial genomes (Woloszynska

2010; Arrieta-Montiel and Mackenzie 2011) and is becoming

increasingly reported in plastomes (Tsumura et al. 2000; Gray

et al. 2009; Wu et al. 2011; Xu et al. 2011; Yi et al. 2013).

Because recombination at these intermediate repeats is infre-

quent, the rearranged genomic forms are present at substoi-

chiometric levels relative to the predominant genomic form,

and the substoichiometric forms are often undetectable by

southern blotting (fig. 2B; Small et al. 1987; Janska et al.

1998; Tsumura et al. 2000; Shedge et al. 2007).

In plant mitochondria, the process of SSS enables a sub-

stoichiometric genomic form to become the predominant

form through increased recombination activity at intermediate

repeats, and possibly also by selective amplification

(Woloszynska 2010; Arrieta-Montiel and Mackenzie 2011).

Mitochondrial SSS activity appears to be the major driver of

genomic structural diversification within and between angio-

sperms (Small et al. 1987; Arrieta-Montiel et al. 2009; Davila

et al. 2011), and it can also result in phenotypic changes, some

of which may be adaptive (Arrieta-Montiel and Mackenzie

2011). The most common phenotypic effect of SSS is cyto-

plasmic male sterility (CMS) (Sandhu et al. 2007), which

causes normally hermaphroditic plants to fail to produce

viable pollen. The regulatory control of CMS and fertility res-

toration is considered an evolutionarily adaptive strategy to

modulate the relative numbers of hermaphrodites and fe-

males in a gynodioecious population (Delph et al. 2007;

Caruso et al. 2012). More recently, mitochondrial SSS activity

has been associated with increased height and delayed

flowering (Albert et al. 2003) and with leaf variegation and

thermotolerance (Shedge et al. 2010), although it is not clear

whether these phenotypes are directly caused by the mito-

chondrial rearrangements.

In plastomes, although low-frequency recombination at in-

termediate repeats is becoming apparent, there have been no

previous reports of SSS activity that has switched the predom-

inant and substoichiometric forms between individuals or spe-

cies, nor has it been established convincingly that different

genomic forms exist within individual plants. Here, we

showed the substoichiometric presence of isomeric genomic

forms of the plastid genome within four individual junipers,

and, more importantly, we showed that the predominant ge-

nomic form has changed multiple times during the evolution-

ary diversification of cupressophytes. Thus, our results indicate

that SSS activity can drive plastid genomic diversity among

species. As SSS in mitochondria is known to act quickly

(within one or two generations), it will be necessary to explore

whether isomeric variation exists between individuals within a

species to firmly establish that SSS is active in cupressophyte

plastids. Given our findings of variation within individuals and

between species, we fully expect that plastomic SSS activity

can also promote genomic diversity among individuals of the

same species.

As we know that mitochondrial SSS can have important

phenotypic consequences on a plant, our discovery of plas-

tomic SSS raises the intriguing possibility that it may also cause

phenotypic changes of evolutionary significance. Recent stud-

ies of Arabidopsis thaliana msh1 or why1/why3 mutants have

shown that the plastid genome undergoes infrequent geno-

mic rearrangement and the plants exhibit slow growth, de-

layed flowering, altered leaf morphology, and leaf variegation

(Marechal et al. 2009; Cappadocia et al. 2010; Xu et al. 2012).

Importantly, leaf variegation may provide thermotolerance in

high light conditions. Thus, it appears that plastomic
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rearrangements can indeed elicit phenotypic changes of adap-

tive significance. In junipers, the genomic inversion we identi-

fied would seem to have little effect on plastid gene function,

and so it would be unlikely to influence phenotype.

Nevertheless, it is possible that the combination of polycis-

tronic transcriptional units created by the arrangement of

the inversion may provide some selective benefit in particular

environments. Alternatively, it may be that the act of genomic

rearrangement generates retrograde signals which are acted

on by the nucleus to promote a physiological response.

Supplementary Material

Supplementary figures S1 and S2 and table S1 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).

Acknowledgments

The authors thank Yashitola Wamboldt and Kempton Horken

for providing technical help with the Southern blot and PCR

experiments. This work was supported in part by the Baylor

University grant BU-044-4512 to R.P.A. and the National

Science Foundation grants DEB-0629402 to A.E.S., and

IOS-1027529 and MCB-1125386 to J.P.M.

Literature Cited
Adams RP, Schwarzbach AE. 2013. Phylogeny of Juniperus using nrDNA

and four cpDNA regions. Phytologia 95:179–187.

Albert B, et al. 2003. Amplification of Nicotiana sylvestris mitochondrial

subgenomes is under nuclear control and is associated with pheno-

typic changes. Genetica 117:17–25.

Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD. 2011. The mitochon-

drial genome of the legume Vigna radiata and the analysis of recom-

bination across short mitochondrial repeats. PLoS One 6:e16404.

Arrieta-Montiel MP, Mackenzie SA. 2011. Plant mitochondrial genomes

and recombination. In: Kempken F, editor. Plant mitochondria. New

York: Springer. p. 65–82.

Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA.

2009. Diversity of the Arabidopsis mitochondrial genome occurs via

nuclear-controlled recombination activity. Genetics 183:1261–1268.

Cappadocia L, et al. 2010. Crystal structures of DNA-Whirly complexes

and their role in Arabidopsis organelle genome repair. Plant Cell 22:

1849–1867.

Caruso CM, Case AL, Bailey MF. 2012. The evolutionary ecology of cyto-

nuclear interactions in angiosperms. Trends Plant Sci. 17:638–643.

Castresana J. 2000. Selection of conserved blocks from multiple align-

ments for their use in phylogenetic analysis. Mol Biol Evol. 17:

540–552.

Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome

alignment with gene gain, loss and rearrangement. PLoS One 5:

e11147.

Davila JI, et al. 2011. Double-strand break repair processes drive evolution

of the mitochondrial genome in Arabidopsis. BMC Biol. 9:64.

Delph LF, Touzet P, Bailey MF. 2007. Merging theory and mechanism in

studies of gynodioecy. Trends Ecol Evol. 22:17–24.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quan-

tities of fresh leaf tissue. Phytochem Bull. 19:11–15.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accu-

racy and high throughput. Nucleic Acids Res. 32:1792–1797.

Gray BN, Ahner BA, Hanson MR. 2009. Extensive homologous recombi-

nation between introduced and native regulatory plastid DNA ele-

ments in transplastomic plants. Transgenic Res. 18:559–572.

Grewe F, Guo W, Gubbels EA, Hansen AK, Mower JP. 2013. Complete

plastid genomes from Ophioglossum californicum, Psilotum nudum,

and Equisetum hyemale reveal an ancestral land plant genome struc-

ture and resolve the position of Equisetales among monilophytes.

BMC Evol Biol. 13:8.

Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. 2008. Complete

nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast

genome and comparative chloroplast genomics: diversified genomic

structure of coniferous species. BMC Plant Biol. 8:70.

Jansen RK, Ruhlman TA. 2012. Plastid genomes of seed plants. In: Bock R,

Knoop V, editors. Genomics of chloroplasts and mitochondria.

Dordrecht (The Netherlands): Springer. p. 103–126.

Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA.

1998. Stoichiometric shifts in the common bean mitochondrial

genome leading to male sterility and spontaneous reversion to fertility.

Plant Cell 10:1163–1180.

Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple se-

quence alignment program. Brief Bioinform. 9:286–298.

Klein M, et al. 1994. Physical mapping of the mitochondrial

genome of Arabidopsis thaliana by cosmid and YAC clones. Plant J.

6:447–455.

Lahr DJ, Katz LA. 2009. Reducing the impact of PCR-mediated recombi-

nation in molecular evolution and environmental studies using a new-

generation high-fidelity DNA polymerase. Biotechniques 47:857–866.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie

2. Nat Methods. 9:357–359.

Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM. 2010. Comparative chlo-

roplast genomics reveals the evolution of Pinaceae genera and sub-

families. Genome Biol Evol. 2:504–517.

Lin CP, Wu CS, Huang YY, Chaw SM. 2012. The complete chloroplast

genome of Ginkgo biloba reveals the mechanism of inverted repeat

contraction. Genome Biol Evol. 4:374–381.

Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH. 1988. The

plant mitochondrial genome: homologous recombination as a mech-

anism for generating heterogeneity. Philos Trans R Soc Lond B Biol Sci.

319:149–163.

Mao K, et al. 2012. Distribution of living Cupressaceae reflects the breakup

of Pangea. Proc Natl Acad Sci U S A. 109:7793–7798.

Marechal A, et al. 2009. Whirly proteins maintain plastid genome stability

in Arabidopsis. Proc Natl Acad Sci U S A. 106:14693–14698.

Mower JP, Case AL, Floro ER, Willis JH. 2012. Evidence against equimo-

larity of large repeat arrangements and a predominant master circle

structure of the mitochondrial genome from a monkeyflower

(Mimulus guttatus) lineage with cryptic CMS. Genome Biol Evol. 4:

670–686.

Palmer JD. 1983. Chloroplast DNA exists in two orientations. Nature 301:

92–93.

Palmer JD, Shields CR. 1984. Tripartite structure of the Brassica campestris

mitochondrial genome. Nature 307:437–440.

Sambrook J, Russell DW 2001. Molecular cloning: a laboratory manual,

3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory.

Sandhu AP, Abdelnoor RV, Mackenzie SA. 2007. Transgenic induction of

mitochondrial rearrangements for cytoplasmic male sterility in crop

plants. Proc Natl Acad Sci U S A. 104:1766–1770.

Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA. 2007. Plant

mitochondrial recombination surveillance requires unusual RecA and

MutS homologs. Plant Cell 19:1251–1264.

Shedge V, Davila J, Arrieta-Montiel MP, Mohammed S, Mackenzie SA.

2010. Extensive rearrangement of the Arabidopsis mitochondrial

genome elicits cellular conditions for thermotolerance. Plant Physiol.

152:1960–1970.

Plastid Substoichiometric Shifting GBE

Genome Biol. Evol. 6(3):580–590. doi:10.1093/gbe/evu046 Advance Access publication February 27, 2014 589

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/6/3/580/579694 by The U

niversity of Texas R
io G

rande Valley user on 11 N
ovem

ber 2021

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu046/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu046/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu046/-/DC1
http://www.gbe.oxfordjournals.org/
http://www.gbe.oxfordjournals.org/


Sloan DB, et al. 2012. Rapid evolution of enormous, multichromosomal

genomes in flowering plant mitochondria with exceptionally high mu-

tation rates. PLoS Biol. 10:e1001241.

Small ID, Isaac PG, Leaver CJ. 1987. Stoichiometric differences in DNA

molecules containing the atpA gene suggest mechanisms for the gen-

eration of mitochondrial genome diversity in maize. EMBO J. 6:

865–869.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phyloge-

netic analyses with thousands of taxa and mixed models.

Bioinformatics 22:2688–2690.

Stein DB, Palmer JD, Thompson WF. 1986. Structural evolution and flip-

flop recombination of chloroplast DNA in the fern genus Osmunda.

Curr Genet. 10:835–841.

Tsumura Y, Suyama Y, Yoshimura K. 2000. Chloroplast DNA inversion

polymorphism in populations of Abies and Tsuga. Mol Biol Evol. 17:

1302–1312.

Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation

software for the fast assembly of multi-gene datasets with character

set and codon information. Cladistics 27:171–180.

Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D. 2011.

The evolution of the plastid chromosome in land plants: gene content,

gene order, gene function. Plant Mol Biol. 76:273–297.

Woloszynska M. 2010. Heteroplasmy and stoichiometric complexity of

plant mitochondrial genomes—though this be madness, yet there’s

method in’t. J Exp Bot. 61:657–671.

Wu CS, Chaw SM. 2013. Highly rearranged and size-variable chloroplast

genomes in conifers II clade (cupressophytes): evolution towards

shorter intergenic spacers. Plant Biotechnol J. Advance Access pub-

lished November 28, 2013, doi: 10.1111/pbi.12141.

Wu CS, Lai YT, Lin CP, Wang YN, Chaw SM. 2009. Evolution of reduced

and compact chloroplast genomes (cpDNAs) in gnetophytes: selection

toward a lower-cost strategy. Mol Phylogenet Evol. 52:115–124.

Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM. 2011. Comparative

chloroplast genomes of Pinaceae: insights into the

mechanism of diversified genomic organizations. Genome Biol Evol.

3:309–319.

Wu CS, Wang YN, Liu SM, Chaw SM. 2007. Chloroplast genome (cpDNA)

of Cycas taitungensis and 56 cp protein-coding genes of Gnetum

parvifolium: insights into cpDNA evolution and phylogeny of extant

seed plants. Mol Biol Evol. 24:1366–1379.

Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organel-

lar genomes with DOGMA. Bioinformatics 20:3252–3255.

Xu YZ, et al. 2011. MutS HOMOLOG1 is a nucleoid protein that alters

mitochondrial and plastid properties and plant response to high light.

Plant Cell 23:3428–3441.

Xu YZ, et al. 2012. The chloroplast triggers developmental reprogramming

when mutS HOMOLOG1 is suppressed in plants. Plant Physiol. 159:

710–720.

Yi X, Gao L, Wang B, Su YJ, Wang T. 2013. The complete chloroplast ge-

nome sequence of Cephalotaxus oliveri (Cephalotaxaceae): evolution-

ary comparison of Cephalotaxus chloroplast DNAs and insights into

the loss of inverted repeat copies in gymnosperms. Genome Biol Evol.

5:688–698.

Zaegel V, et al. 2006. The plant-specific ssDNA binding protein OSB1 is

involved in the stoichiometric transmission of mitochondrial DNA in

Arabidopsis. Plant Cell 18:3548–3563.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo

short read assembly using de Bruijn graphs. Genome Res. 18:

821–829.

Zhong B, et al. 2011. Systematic error in seed plant phylogenomics.

Genome Biol Evol. 3:1340–1348.

Associate editor: Shu-Miaw Chaw

Guo et al. GBE

590 Genome Biol. Evol. 6(3):580–590. doi:10.1093/gbe/evu046 Advance Access publication February 27, 2014

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/6/3/580/579694 by The U

niversity of Texas R
io G

rande Valley user on 11 N
ovem

ber 2021


	Predominant and Substoichiometric Isomers of the Plastid Genome Coexist within Juniperus Plants and Have Shifted Multiple Times during Cupressophyte Evolution
	Recommended Citation
	Authors

	OP-GBEV140046 580..590

