468 research outputs found

    Bulk-Explosion-Induced Metal Spattering during Laser Processing

    Get PDF
    Spattering has been a problem in metal processing involving high-power lasers, like laser welding, machining, and recently, additive manufacturing. Limited by the capabilities of in situ diagnostic techniques, typically imaging with visible light or laboratory x-ray sources, a comprehensive understanding of the laser-spattering phenomenon, particularly the extremely fast spatters, has not been achieved yet. Here, using MHz single-pulse synchrotron-x-ray imaging, we probe the spattering behavior of Ti-6Al-4V with micrometer spatial resolution and subnanosecond temporal resolution. Combining direct experimental observations, quantitative image analysis, as well as numerical simulations, our study unravels a novel mechanism of laser spattering: The bulk explosion of a tonguelike protrusion forming on the front keyhole wall leads to the ligamentation of molten metal at the keyhole rims and the subsequent spattering. Our study confirms the critical role of melt and vapor flow in the laser-spattering process and opens a door to manufacturing spatter- and defect-free metal parts via precise control of keyhole dynamics

    Prevalence of Splanchnic Vein Thrombosis in Pancreatitis: A Systematic Review and Meta-Analysis of Observational Studies

    Get PDF
    Splanchnic vein thrombosis (SVT) may be negatively associated with the prognosis of pancreatitis. We performed a systematic review and meta-analysis of literatures to explore the prevalence of SVT in pancreatitis. All observational studies regarding the prevalence of SVT in pancreatitis were identified via PubMed and EMBASE databases. The prevalence of SVT was pooled in the total of patients with pancreatitis. And it was also pooled in the subgroup analyses according to the stage and causes of pancreatitis, location of SVT, and regions where the studies were performed. After the review of 714 studies, 44 studies fulfilled the inclusion criteria. Meta-analyses showed a pooled prevalence of SVT of 13.6% in pancreatitis. According to the stage of pancreatitis, the pooled prevalence of SVT was 16.6% and 11.6% in patients with acute and chronic pancreatitis, respectively. According to the causes of pancreatitis, the pooled prevalence of SVT was 12.2% and 14.6% in patients with hereditary and autoimmune pancreatitis. According to the location of SVT, the pooled prevalence of portal vein, splenic vein, and mesenteric vein thrombosis was 6.2%, 11.2%, and 2.7% in pancreatitis. The prevalence of SVT in pancreatitis was 16.9%, 11.5%, and 8.5% in Europe, America, and Asia, respectively

    The effect of Er3+ concentration on the kinetics of multiband upconversion in NaYF4:Yb/Er microcrystals

    Get PDF
    In Yb-Er co-doped upconversion (UC) nanomaterials, upconversion luminescence (UCL) can be modulated to generate multiband UCL emissions by changing the concentration of activator Er3+. Nonetheless, the effect of the Er3+ concentrations on the kinetics of these emissions is still unknown. We here study the single β-NaYF4:Yb3+/Er3+ microcrystal (MC) doped with different Er3+ concentrations by nanosecond time-resolved spectroscopy. Interestingly, different Er3+ doping concentrations exhibit different UCL emission bands and UCL response rates. At low Er3+ doping concentrations (1 mol%), multiband emission in β-NaYF4:Yb3+/Er3+ (20/1 mol%) MCs could not be observed and the response rate of UCL was slow (5–10 μs) in β-NaYF4:Yb3+/Er3+. Increasing the Er3+ doping concentration to 10 mol% can shorten the distance between Yb3+ ions and Er3+ ions, which promotes the energy transfer between them. β-NaYF4:Yb3+/Er3+ (20/10 mol%) can achieve obvious multiband UCL and a quick response rate (0.3 µs). However, a further increase in the Er doping concentration (80 mol%) makes MCs limited by the CR process and cannot achieve the four-photon UC process (4F5/2 → 2K13/2 and 2H9/2 → 2D5/2). Therefore, the result shows that changing the Er3+ doping concentration could control the energy flow between the different energy levels in Er3+, which could affect the response time and UCL emission of the Yb/Er doped rare earth materials. Our work can facilitate the development of fast-response optoelectronics, optical-sensing, and display industries

    Secondary infection of Fasciola gigantica in buffaloes shows a similar pattern of serum cytokine secretion as in primary infection

    Get PDF
    BackgroundAs a natural host of Fasciola gigantica, buffalo is widely infected by F. gigantica. Its impact on buffalo production has caused great losses to the husbandry sector, and repeat infection is non-negligible. In buffaloes experimentally infected with F. gigantica, primary and secondary infection have yielded the same rate of fluke recovery, indicating a high susceptibility of buffalo to F. gigantica, which contributes to the high infection rate. Determining the immunological mechanism of susceptibility will deepen the understanding of the interaction between F. gigantica and buffalo. Here, we explored the immune response of buffaloes against primary and secondary F. gigantica infection, with a focus on cytokines’ dynamics explored through serum cytokine detection.MethodsBuffaloes were assigned to three groups: group A (noninfected, n = 4), group B (primary infection, n = 3), and group C (secondary infection, n = 3). Group B was infected via oral gavage with 250 viable F. gigantica metacercariae, and group C was infected twice with 250 metacercariae at an interval of 4 weeks. The second infection of group C was performed simultaneously with that of group B. Whole blood samples were collected pre-infection (0 weeks) and at 1–6, 10, and 12  weeks after that. The serum levels of seven cytokines (IFN-γ, IL-4, IL-5, IL-10, IL-13, TGF-β, and IL-17) were simultaneously determined using ELISA and further analyzed.ResultsIn the present study, no significant changes in Th1-type cytokines production were detected in early infection, both in primary and secondary infections, while the Th2-type response was strongly induced. A comparison of primary and secondary infection showed no significant difference in the cytokine secretion, which may indicate that the re-infection at 4 weeks after primary infection could not induce a robust adaptive immune response. The full extent of interaction between buffalo and F. gigantica in re-infection requires further study

    Elucidate microbial characteristics in a fullscale treatment plant for offshore oil produced wastewater

    Get PDF
    Oil-produced wastewater treatment plants, especially those involving biological treatment processes, harbor rich and diverse microbes. However, knowledge of microbial ecology and microbial interactions determining the efficiency of plants for oil-produced wastewater is limited. Here, we performed 16S rDNA amplicon sequencing to elucidate the microbial composition and potential microbial functions in a full-scale well-worked offshore oil-produced wastewater treatment plant. Results showed that microbes that inhabited the plant were diverse and originated from oil and marine associated environments. The upstream physical and chemical treatments resulted in low microbial diversity. Organic pollutants were digested in the anaerobic baffled reactor (ABR) dominantly through fermentation combined with sulfur compounds respiration. Three aerobic parallel reactors (APRs) harbored different microbial groups that performed similar potential functions, such as hydrocarbon degradation, acidogenesis, photosynthetic assimilation, and nitrogen removal. Microbial characteristics were important to the performance of oil-produced wastewater treatment plants with biological processes

    Exuberant fibroblast activity compromises lung function via ADAMTS4

    Get PDF
    © 2020, The Author(s), under exclusive licence to Springer Nature Limited. Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes—in particular the ECM protease ADAMTS4—and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections
    • …
    corecore