134 research outputs found

    Polarized electron-beam acceleration driven by vortex laser pulses

    Full text link
    We propose a new approach based on an all-optical set-up for generating relativistic polarized electron beams via vortex Laguerre-Gaussian (LG) laser-driven wakefield acceleration. Using a pre-polarized gas target, we find that the topology of the vortex wakefield resolves the depolarization issue of the injected electrons. In full three-dimensional particle-in-cell simulations, incorporating the spin dynamics via the Thomas-Bargmann Michel Telegdi equation, the LG laser preserves the electron spin polarization by more than 80% at high beam charge and flux. The method releases the limit on beam flux for polarized electron acceleration and promises more than an order of magnitude boost in peak flux, as compared to Gaussian beams. These results suggest a promising table-top method to produce energetic polarized electron beams.Comment: We replace some results and revise some description

    Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations

    Get PDF
    The baiji, or Yangtze River dolphin (Lipotes vexillifer), is a flagship species for the conservation of aquatic animals and ecosystems in the Yangtze River of China; however, this species has now been recognized as functionally extinct. Here we report a high-quality draft genome and three re-sequenced genomes of L. vexillifer using Illumina short-read sequencing technology. Comparative genomic analyses reveal that cetaceans have a slow molecular clock and molecular adaptations to their aquatic lifestyle. We also find a significantly lower number of heterozygous single nucleotide polymorphisms in the baiji compared to all other mammalian genomes reported thus far. A reconstruction of the demographic history of the baiji indicates that a bottleneck occurred near the end of the last deglaciation, a time coinciding with a rapid decrease in temperature and the rise of eustatic sea level

    The genome sequence of the orchid Phalaenopsis equestris

    Get PDF
    Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers. (Résumé d'auteur

    Miscibility and phase separation of polymer blends under normal and pressurised conditions

    No full text
    Imperial Users onl

    Silence of p15 expression by RNAi enhances cisplatin resistance in hepatocellular carcinoma cells

    No full text
    The insensitivity of hepatocellular carcinoma to chemotherapy is associated with alternation in tumor cell cycling. This current study was designed to investigate the impact of p15 silencing on the sensitivity of Human hepatocellular carcinoma HepG2 cells to cisplatin. HepG2/CDDP/1.6 and HepG2/CDDP/2.0 cells were induced by culture with increased doses of cisplatin and their sensitivities to cis-Diamine dichloroplatinum (CDDP) were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The impacts of p15 silencing on the cell cycling and P-gp expression were characterized by flow cytometry, RT-PCR and Western blot assays, respectively Knockdown of p15 expression dramatically reduced the relative levels of p15 expression and the frequency of phase G1, promoting cell cycling. On the other hand, knockdown of p15 expression significantly up-regulated the expression of P-glycoprotein (P-gp) in HepG2/CDDP/2.0 cells, associated with the increased resistance of HepG2 cells to CDDP in vitro. In conclusion, the p15 may be a critical regulator of the development of CDDP resistance in HepG2 cells

    Odor Discrimination by Similarity Measures of Abstract Odor Factor Maps from Electronic Noses

    No full text
    The aim of this study is to improve the discrimination performance of electronic noses by introducing a new method for measuring the similarity of the signals obtained from the electronic nose. We constructed abstract odor factor maps (AOFMs) as the characteristic maps of odor samples by decomposition of three-way signal data array of an electronic nose. A similarity measure for two-way data was introduced to evaluate the similarities and differences of AOFMs from different samples. The method was assessed by three types of pipe and powder tobacco samples. Comparisons were made with other techniques based on PCA, SIMCA, PARAFAC and PARAFAC2. The results showed that our method had significant advantages in discriminating odor samples with similar flavors or with high VOCs release

    Boosting Electrochemical Nitrogen Reduction Performance over Binuclear Mo Atoms on N-Doped Nanoporous Graphene: A Theoretical Investigation

    No full text
    Exploration of efficient catalysts is a priority for the electrochemical nitrogen reduction reaction (NRR) in order to receive a high product yield rate and faradaic efficiency of NH3, under ambient conditions. In the present contribution, the binding free energy of N2, NNH, and NH2 were used as descriptors to screen the potential NRR electrocatalyst among different single or binuclear transition metal atoms on N-doped nanoporous graphene. Results showed that the binuclear Mo catalyst might exhibit the highest catalytic activity. Further free energy profiles confirmed that binuclear Mo catalysts possess the lowest potential determining step (hydrogenation of NH2* to NH3). The improved activities could be ascribed to a down-shift of the density of states for Mo atoms. This investigation could contribute to the design of a highly active NRR electrocatalyst
    corecore