112 research outputs found

    Preparation and Mechanical Properties of Continuous Carbon Nanotube Networks Modified C f

    Get PDF
    Continuous carbon nanotube (CNT) networks were formed in Cf/SiC composites via freeze-drying method. Composites were fabricated by precursor infiltration and pyrolysis (PIP) process afterwards. The different distribution morphologies of CNTs in the preforms originating from the different CNT contents were analyzed while the influence of the distribution of CNTs was discussed in detail. Compared to composites without CNTs, the interfacial shear strength (ILSS) and the flexural strength of Cf/1%CNTs/SiC were increased by 31% and 27%, respectively, but the values of Cf/2.5%CNTs/SiC decreased as a result of lots of defects caused by excess CNTs. With the analysis of ILSS, the flexural strengths, and the fracture morphologies, CNTs effectively improved the weak interfacial strength between T700SC carbon fibers and SiC matrix

    Enhancing GAN-Based Vocoders with Contrastive Learning Under Data-limited Condition

    Full text link
    Vocoder models have recently achieved substantial progress in generating authentic audio comparable to human quality while significantly reducing memory requirement and inference time. However, these data-hungry generative models require large-scale audio data for learning good representations. In this paper, we apply contrastive learning methods in training the vocoder to improve the perceptual quality of the vocoder without modifying its architecture or adding more data. We design an auxiliary task with mel-spectrogram contrastive learning to enhance the utterance-level quality of the vocoder model under data-limited conditions. We also extend the task to include waveforms to improve the multi-modality comprehension of the model and address the discriminator overfitting problem. We optimize the additional task simultaneously with GAN training objectives. Our result shows that the tasks improve model performance substantially in data-limited settings. Our analysis based on the result indicates that the proposed design successfully alleviates discriminator overfitting and produces audio of higher fidelity

    Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing

    Get PDF
    Lightweight conductive porous graphene/thermoplastic polyurethane (TPU) foams with ultrahigh compressibility were successfully fabricated by using the thermal induced phase separation (TISP) technique. The density and porosity of the foams were calculated to be about 0.11 g cm−3 and 90% owing to the porous structure. Compared with pure TPU foams, the addition of graphene could effectively increase the thickness of the cell wall and hinder the formation of small holes, leading to a robust porous structure with excellent compression property. Meanwhile, the cell walls with small holes and a dendritic structure were observed due to the flexibility of graphene, endowing the foam with special positive piezoresistive behaviors and peculiar response patterns with a deflection point during the cyclic compression. This could effectively enhance the identifiability of external compression strain when used as piezoresistive sensors. In addition, larger compression sensitivity was achieved at a higher compression rate. Due to high porosity and good elasticity of TPU, the conductive foams demonstrated good compressibility and stable piezoresistive sensing signals at a strain of up to 90%. During the cyclic piezoresistive sensing test under different compression strains, the conductive foam exhibited good recoverability and reproducibility after the stabilization of cyclic loading. All these suggest that the fabricated conductive foam possesses great potential to be used as lightweight, flexible, highly sensitive, and stable piezoresistive sensors

    A method for determining unsaturated strength parameters in stability analysis of loess slope

    Get PDF
    In recent years, with the rapid development of social economy and progress of human activities in loess area, the Loess Plateau become one of the areas with the most serious soil erosion and the most frequent occurrence of geological disasters in the world. Landslide, collapse, debris flow and ground subsidence are common geological disasters in the Loess Plateau, resulting in a more fragile ecological environment. Therefore, it is very important to accurately predict the stability of loess slope for engineering safety and ecological protection in loess region. But loess is a typical unsaturated soil. the formula of unsaturated strength is seldom used in practical applications. The reason is that the matric suction is difficult to measure. And it cannot be applied in engineering practice. In this paper, based on unsaturated soil shear strength formula of Fredlund, the direct shear test under different moisture content is conducted with the samples of Q1 loess. The effective cohesion and the effective internal friction angle are obtained. Through the matric suction test, the soil-water characteristic curve is plotted. Combined cohesion and matric suction, the strength parameters of unsaturated loess in formula of Fredlund can be informed

    Magnetic vortex and unsaturated magnetization components in highly oriented pyrolytic graphite

    Get PDF
    Observation of ferromagnetic and granular superconductive features in highly-oriented-pyrolytic-graphite (HOPG) has recently attracted an important attention. We report a novel temperature dependent XRD and SQUID investigation of HOPG in the temperature range from 300.15 to 77.15 K. Unusual hysteresis features indicate the possible presence of vortex states in conditions of magnetic field approximately perpendicular to the HOPG layers. This interpretation is further supported by additional measurements performed on intermediate lamellae extracted by exfoliation. Evidence of a possible structural-transition in the c-axis of HOPG in the temperature range between 77 K and 100K is also provided by using the Rietveld refinement method. ZFC and FC measurements performed at high field values of 5000-10000 Oe, together with mFC-mZFC subtraction, highlight absence of a sharp depletion of the difference between magnetization signals towards zero. These observations may indicate the possible presence of additional unsaturated weak features, which are ascribed to superconductive signals as previously predicted by Scheike et al. [8]

    Evidence of spin density waves in La3_3Ni2_2O7−δ_{7-\delta}

    Full text link
    The recently discovered superconductivity with critical temperature TcT_{c} up to 80 K in the Ruddlesden-Popper phases La3_3Ni2_2O7−δ_{7-\delta} under pressure has drawn great attention. Here we report the positive muon spin relaxation (μ+\mu^+SR) study of polycrystalline La3_3Ni2_2O7−δ_{7-\delta} under ambient pressure. The zero-field μ+\mu^+SR experiments reveal the existence of static long range magnetic order in La3_3Ni2_2O7−δ_{7-\delta}, and the the muon spin depolarization spectra are consistent with the spin density wave internal field distribution. The weak transverse field μ+\mu^+SR measurements suggest the bulk magnetic transition near TN=148T_{\rm{N}}=148 K. This is the first research which discovers the existence of the spin density wave in La3_3Ni2_2O7−δ_{7-\delta} microscopically

    Statistical Parameterized Physics-Based Machine Learning Digital Twin Models for Laser Powder Bed Fusion Process

    Full text link
    A digital twin (DT) is a virtual representation of physical process, products and/or systems that requires a high-fidelity computational model for continuous update through the integration of sensor data and user input. In the context of laser powder bed fusion (LPBF) additive manufacturing, a digital twin of the manufacturing process can offer predictions for the produced parts, diagnostics for manufacturing defects, as well as control capabilities. This paper introduces a parameterized physics-based digital twin (PPB-DT) for the statistical predictions of LPBF metal additive manufacturing process. We accomplish this by creating a high-fidelity computational model that accurately represents the melt pool phenomena and subsequently calibrating and validating it through controlled experiments. In PPB-DT, a mechanistic reduced-order method-driven stochastic calibration process is introduced, which enables the statistical predictions of the melt pool geometries and the identification of defects such as lack-of-fusion porosity and surface roughness, specifically for diagnostic applications. Leveraging data derived from this physics-based model and experiments, we have trained a machine learning-based digital twin (PPB-ML-DT) model for predicting, monitoring, and controlling melt pool geometries. These proposed digital twin models can be employed for predictions, control, optimization, and quality assurance within the LPBF process, ultimately expediting product development and certification in LPBF-based metal additive manufacturing.Comment: arXiv admin note: text overlap with arXiv:2208.0290

    Infrared Imaging of Magnetic Octupole Domains in Non-collinear Antiferromagnets

    Full text link
    Magnetic structure plays a pivotal role in the functionality of antiferromagnets (AFMs), which not only can be employed to encode digital data but also yields novel phenomena. Despite its growing significance, visualizing the antiferromagnetic domain structure remains a challenge, particularly for non-collinear AFMs. Currently, the observation of magnetic domains in non-collinear antiferromagnetic materials is feasible only in Mn3_{3}Sn, underscoring the limitations of existing techniques that necessitate distinct methods for in-plane and out-of-plane magnetic domain imaging. In this study, we present a versatile method for imaging the antiferromagnetic domain structure in a series of non-collinear antiferromagnetic materials by utilizing the anomalous Ettingshausen effect (AEE), which resolves both the magnetic octupole moments parallel and perpendicular to the sample surface. Temperature modulation due to the AEE originating from different magnetic domains is measured by the lock-in thermography, revealing distinct behaviors of octupole domains in different antiferromagnets. This work delivers an efficient technique for the visualization of magnetic domains in non-collinear AFMs, which enables comprehensive study of the magnetization process at the microscopic level and paves the way for potential advancements in applications.Comment: National Science Review in pres
    • …
    corecore