59 research outputs found
Boundary behaviour of the unique solution to a singular Dirichlet problem with a convection term
AbstractBy Karamata regular variation theory and constructing comparison functions, we derive that the boundary behaviour of the unique solution to a singular Dirichlet problem −Δu=b(x)g(u)+λ|∇u|q, u>0, x∈Ω, u|∂Ω=0, which is independent of λ|∇uλ|q, where Ω is a bounded domain with smooth boundary in RN, λ∈R, q∈(0,2], lims→0+g(s)=+∞, and b is non-negative on Ω, which may be vanishing on the boundary
External modulation method for generating accurate linear optical FMCW
Frequency modulation continuous wave (FMCW) lasers are key components in modern optical imaging. However, current intracavity modulation lasers do not exhibit low-frequency jitter rate and high linearity due to the inherent relaxation oscillations. Although this may be compensated in a direct modulation laser diode using an optoelectronic feedback loop, the available sweep speed is moderately small. In this letter, a special external modulation method is developed to improve the performance of FMCW. Since only the first sideband optical field is used during the entire generation process, phase noise is kept to a minimum and is also independent of the sweep speed. We demonstrate that the linearity and jitter rates do not deteriorate appreciably when the sweep speed is changed over three orders of magnitude, even up to the highest sweep speed of 2.5 GHz/ μs
Reduced Brain Activity in the Right Putamen as an Early Predictor for Treatment Response in Drug-Naive, First-Episode Schizophrenia
Antipsychotic medications can have a significant effect on brain function after only several days of treatment. It is unclear whether such an acute effect can serve as an early predictor for treatment response in schizophrenia. Thirty-two patients with drug-naive, first-episode schizophrenia and 32 healthy controls underwent resting-state functional magnetic resonance imaging. Patients were treated with olanzapine and were scanned at baseline and 1 week of treatment. Healthy controls were scanned once at baseline. Symptom severity was assessed within the patient group using the Positive and Negative Syndrome Scale (PANSS) at three time points (baseline, 1 week of treatment, and 8 weeks of treatment). The fractional amplitude of low frequency fluctuation (fALFF) and support vector regression (SVR) methods were used to analyze the data. Compared with the control group, the patient group showed increased levels of fALFF in the bilateral putamen at baseline. After 1 week of olanzapine treatment, the patient group showed decreased levels of fALFF in the right putamen relative to those at baseline. The SVR analysis found a significantly positive relationship between the reduction in fALFF after 1 week of treatment and the improvement in positive symptoms after 8 weeks of treatment (r = 0.431, p = 0.014). The present study provides evidence that early reduction and normalization of fALFF in the right putamen may serve as a predictor for treatment response in patients with schizophrenia
Enhanced baseline activity in the left ventromedial putamen predicts individual treatment response in drug-naive, first-episode schizophrenia: Results from two independent study samples
BACKGROUND: Antipsychotic medications are the common treatment for schizophrenia. However, reliable biomarkers that can predict individual treatment response are still lacking. The present study aimed to examine whether baseline putamen activity can predict individual treatment response in schizophrenia.
METHODS: Two independent samples of patients with drug-naive, first-episode schizophrenia (32 patients in sample 1 and 44 in sample 2) and matched healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) at baseline. Patients were treated with olanzapine for 8 weeks; symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and week 8. Fractional amplitude of low frequency fluctuation (fALFF) and pattern classification techniques were used to analyze the data.
FINDINGS: Univariate analysis shows an elevated pre-treatment fALFF in the left ventromedial putamen in both patient samples compared to healthy controls (p\u27s \u3c 0.001). The support vector regression (SVR) analysis suggests a positive relationship between baseline pre-treatment fALFF in the left ventromedial putamen and improvement in positive symptom at week 8 in each patient group using a cross-validated method (r=0.452, p=.002; r=0.511, p=.003, respectively).
INTERPRETATION: Our study suggests that elevated pre-treatment mean fALFF in the left ventromedial putamen may predict individual therapeutic response to olanzapine treatment in drug-naive, first-episode patients with schizophrenia. Future studies are needed to confirm whether this finding is generalizable to patients with schizophrenia treated with other antipsychotic medications.
FUND: The National Key RandD Program of China and the National Natural Science Foundation of China
Disrupted asymmetry of inter- and intra-hemispheric functional connectivity in patients with drug-naive, first-episode schizophrenia and their unaffected siblings
BACKGROUND: Lack of normal asymmetry in the brain has been reported in patients with schizophrenia. However, it remains unclear whether disrupted asymmetry originates from inter-hemispheric functional connectivity (FC) and/or intra-hemispheric FC in this patient population.
METHODS: Forty-four patients with drug-naive, first-episode schizophrenia, 42 unaffected siblings, and 44 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) scan. The parameter of asymmetry (PAS) and support vector machine (SVM) were used to analyze the data. Patients were treated with olanzapine for 8 weeks.
FINDINGS: Compared with healthy controls, patients showed lower PAS scores in the left middle temporal gyrus (MTG)/inferior temporal gyrus (ITG), left posterior cingulate cortex (PCC)/precuneus and left angular gyrus, and higher PAS scores in the left precentral gyrus/postcentral gyrus. Unaffected siblings also showed lower PAS scores in the left MTG/ITG and left PCC/precuneus relative to healthy controls. Further, SVM analysis showed that a combination of the PAS scores in these two clusters in patients at baseline was able to predict clinical response after 8weeks of olanzapine treatment with 77.27% sensitivity, 72.73% specificity, and 75.00% accuracy.
INTERPRETATION: The present study suggests disrupted asymmetry of inter- and intra-hemispheric FC in drug-naive, first-episode schizophrenia; in addition, a reduced asymmetry of inter-hemispheric FC in the left MTG/ITG and left PCC/precuneus may serve as an endophenotype for schizophrenia, and may have clinical utility to predict response to olanzapine treatment. FUND: The National Key RandD Program of China and the National Natural Science Foundation of China
A global product of fine-scale urban building height based on spaceborne lidar
Characterizing urban environments with broad coverages and high precision is
more important than ever for achieving the UN's Sustainable Development Goals
(SDGs) as half of the world's populations are living in cities. Urban building
height as a fundamental 3D urban structural feature has far-reaching
applications. However, so far, producing readily available datasets of recent
urban building heights with fine spatial resolutions and global coverages
remains a challenging task. Here, we provide an up-to-date global product of
urban building heights based on a fine grid size of 150 m around 2020 by
combining the spaceborne lidar instrument of GEDI and multi-sourced data
including remotely sensed images (i.e., Landsat-8, Sentinel-2, and Sentinel-1)
and topographic data. Our results revealed that the estimated method of
building height samples based on the GEDI data was effective with 0.78 of
Pearson's r and 3.67 m of RMSE in comparison to the reference data. The mapping
product also demonstrated good performance as indicated by its strong
correlation with the reference data (i.e., Pearson's r = 0.71, RMSE = 4.60 m).
Compared with the currently existing products, our global urban building height
map holds the ability to provide a higher spatial resolution (i.e., 150 m) with
a great level of inherent details about the spatial heterogeneity and
flexibility of updating using the GEDI samples as inputs. This work will boost
future urban studies across many fields including climate, environmental,
ecological, and social sciences
Unprecedented scaling/fouling resistance of omniphobic polyvinylidene fluoride membrane with silica nanoparticle coated micropillars in direct contact membrane distillation
Recent development of omniphobic membranes shows promise in scaling/fouling mitigation in membrane distillation (MD), however, the fundamental understanding is still under dispute. In this paper, we report a novel omniphobic micropillared membrane coated by silica nanoparticles (SiNPs) (SiNPs-MP-PVDF) with dual-scale roughness prepared by a micromolding phase separation (μPS) and electrostatic attraction. This membrane was used as a model for analysis of scaling behavior by calcium sulfate (CaSO4) scaling and fouling behavior by protein casein in comparison with commercial (C-PVDF) and micropillared (MP-PVDF) membranes. Unprecedented scaling/fouling resistance to CaSO4 and casein was observed in direct contact membrane distillation (DCMD) for SiNPs-MP-PVDF membrane. Similar scaling and fouling occurred for commercial PVDF and micropillared PVDF membranes. The observation corresponds well to the wetting state of all membranes as SiNPs-MP-PVDF shows suspended wetting, but MP-PVDF shows pinned wetting. From a hydrodynamic view, the suspended wetting attributes a slippery surface which reduces the direct contact of foulants to solid membrane part and leads to significantly reduced fouling and scaling. However, a pinned (or metastable) wetting state leads to a stagnant interfacial layer that is prone to severe fouling and scaling. This work highlights that both scaling and fouling resistance are indeed of suspended wetting state and slippage origin
Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction
The oxygen evolution reaction (OER) is the performance-limiting step in the process of water splitting. In situ electrochemical conditioning could induce surface reconstruction of various OER electrocatalysts, forming reactive sites dynamically but at the expense of fast cation leaching. Therefore, achieving simultaneous improvement in catalytic activity and stability remains a significant challenge. Herein, we used a scalable cation deficiency-driven exsolution approach to ex situ reconstruct a homogeneous-doped cobaltate precursor into an Ir/CoO/perovskite heterojunction (SCI-350), which served as an active and stable OER electrode. The SCI-350 catalyst exhibited a low overpotential of 240 mV at 10 mA cm-2 in 1 M KOH and superior durability in practical electrolysis for over 150 h. The outstanding activity is preliminarily attributed to the exponentially enlarged electrochemical surface area for charge accumulation, increasing from 3.3 to 175.5 mF cm-2. Moreover, density functional theory calculations combined with advanced spectroscopy and 18O isotope-labeling experiments evidenced the tripled oxygen exchange kinetics, strengthened metal-oxygen hybridization, and engaged lattice oxygen oxidation for O-O coupling on SCI-350. This work presents a promising and feasible strategy for constructing highly active oxide OER electrocatalysts without sacrificing durability
- …