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Abstract

By Karamata regular variation theory and constructing comparison functions, we derive that the boundary behaviour of the
unique solution to a singular Dirichlet problem −�u = b(x)g(u) + λ|∇u|q , u > 0, x ∈ Ω , u|∂Ω = 0, which is independent of
λ|∇uλ|q , where Ω is a bounded domain with smooth boundary in R

N , λ ∈ R, q ∈ (0,2], lims→0+ g(s) = +∞, and b is non-
negative on Ω , which may be vanishing on the boundary.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and the main results

The purpose of this paper is to investigate the boundary behaviour of the unique classical solution to the following
model problem

−�u = b(x)g(u) + λ|∇u|q, u > 0, x ∈ Ω, u|∂Ω = 0, (1.1)

where Ω is a bounded domain with smooth boundary in R
N (N � 1), λ ∈ R, q ∈ (0,2], g satisfies

(g1) g ∈ C1((0,∞), (0,∞)), g′(s) < 0 for all s > 0, lims→0+ g(s) = +∞;

and b satisfies

(b1) b ∈ Cα(Ω) for some α ∈ (0,1), is non-negative in Ω and positive near the boundary ∂Ω .
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The problem arises in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical
heterogeneous catalysts, as well as in the theory of heat conduction in electrical materials (see [4,7,10,17,21]).

For λ = 0, i.e., problem (1.1) reads the following one

−�u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0. (1.2)

Problem (1.2) was discussed in a number of works; see, for instance, [3,4,7,8,13–15,20–24,26,27].
For b ≡ 1 on Ω : when g satisfies (g1), Fulks and Maybee [7], Stuart [21], Crandall, Rabinowitz and Tartar [4]

showed that problem (1.2) has a unique solution u ∈ C2+α(Ω) ∩ C(Ω). Moreover, Theorems 2.2 and 2.5 in [4]
showed that if ϕ1 ∈ C[0, a] ∩ C2(0, a] is the local solution to the problem

−ϕ′′
1 (s) = g

(
ϕ1(s)

)
, ϕ1(s) > 0, 0 < s < a, ϕ1(0) = 0, (1.3)

then there exist positive constants C1 and C2 such that

(I) C1ϕ1(d(x)) � u(x) � C2ϕ1(d(x)) near ∂Ω , where d(x) = dist(x, ∂Ω).

In particular, when g(u) = u−γ , γ > 1, u has the property:

(I1) C1[d(x)]2/(1+γ ) � u(x) � C2[d(x)]2/(1+γ ) near ∂Ω.

In [15], by constructing a pair of global subsolution and supersolution, Lazer and McKenna showed that (I1) continues
to hold on Ω. Then u ∈ H 1

0 (Ω) if and only if γ < 3. This is a basic character to problem (1.2) for g(u) = u−γ with
γ > 0.

When λ = ±1, 0 < q < 2, b(x) ≡ 1 on Ω and the function g : (0,∞) → (0,∞) is locally Lipschitz continuous and
decreasing, Giarrusso and Porru [11] showed that if g satisfies the following conditions:

(g2)
∫ 1

0 g(s) ds = ∞,
∫ ∞

1 g(s) ds < ∞,

(g3) let G1(t) = ∫ ∞
t

g(s) ds, t > 0; there exist positive constants δ and M with M > 1 such that G1(t) < MG1(2t),
∀t ∈ (0, δ),

then the unique solution u to problem (1.1) has the properties:

(II1) |u(x) − ϕ2(d(x))| < C0d(x), ∀x ∈ Ω for 0 < q � 1;
(II2) |u(x) − ϕ2(d(x))| < C0d(x)[G1(ϕ2(d(x)))](q−1)/2, ∀x ∈ Ω for 1 < q < 2, where C0 is a suitable positive

constant and ϕ2 ∈ C[0,∞) ∩ C2(0,∞) is uniquely determined by

ϕ2(t)∫
0

ds√
2G1(s)

= t, t > 0. (1.4)

These imply that

lim
d(x)→0

u(x)

ϕ2(d(x))
= 1. (1.5)

In particular, if g(u) = u−γ , γ > 1, then ϕ2(s) = cs2/(1+γ ), c = [ (1+γ )2

2(γ−1)
]1/(1+γ ).

For other works, see [5,6,9,10,25,28,30] and the references therein.
Our approach relies on Karamata regular variation functions, which was first introduced and established by Kara-

mata in 1930 and is a basic tool in stochastic process, see [16,18,19], and has been applied to study the boundary
behaviour of solutions to boundary blow-up elliptic problems (see [1,2,29]) and singular nonlinear Dirichlet problems
(see [24,26–28,30]).
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Definition 1.1. A positive measurable function f defined on [a,∞), for some a > 0, is called regularly varying at
infinity with index ρ, written f ∈ RVρ , if for each ξ > 0 and some ρ ∈ R,

lim
s→∞

f (ξs)

f (s)
= ξρ. (1.6)

In particular, when ρ = 0, f is called slowly varying at infinity.
Clearly, if g ∈ RVρ , then L(s) := f (s)/sρ is slowly varying at infinity.
Some basic examples of slowly varying functions at infinity are:

(i) every measurable function on [a,∞) which has a positive limit at infinity;
(ii) (ln s)q and (ln(ln s))q , q ∈ R;

(iii) e(ln s)p , 0 < p < 1.

We also see that a positive measurable function g defined on (0, a) for some a > 0, is regularly varying at zero
with index σ (write g ∈ RVZσ ) if t → g(1/t) belongs to RV−σ .

Proposition 1.1 (Uniform convergence theorem). If f ∈ RVρ , then (1.6) holds uniformly for ξ ∈ [a, b] with 0 < a < b.

Proposition 1.2 (Representation theorem). A function L is slowly varying at infinity if and only if it may be written in
the form

L(s) = φ(s) exp

( s∫
a

y(τ )

τ
dτ

)
, s � a, (1.7)

for some a > 0, where the functions φ and y are measurable and for s → +∞, y(s) → 0 and φ(s) → c0, with c0 > 0.

We call that

L̂(s) = c0 exp

( s∫
a

y(τ )

τ
dτ

)
, s � a, (1.8)

is normalised slowly varying at infinity and

f (s) = c0s
ρL̂(s), s � a, (1.9)

is normalised regularly varying at infinity with index ρ (write f ∈ NRVρ ).
Similarly, g is called normalised regularly varying at zero with index σ , written g ∈ NRVZσ if t → g(1/t) belongs

to NRV−σ .
A function f ∈ RVρ belongs to NRVρ if and only if

f ∈ C1[b,∞) for some b > 0 and lim
s→∞

sf ′(s)
f (s)

= ρ. (1.10)

In this paper, by Karamata regular variation theory and constructing comparison functions, we derive the boundary
behaviour to the unique solution to problem (1.1) for the weight b which may be vanishing on the boundary.

Our main results are the following.

Theorem 1.1. Let λ ∈ R, q ∈ (0,2], b satisfy (b1), g satisfy (g1) and g ∈ NRVZ−γ with γ > 1. Suppose that there exist
a positive non-decreasing C1-function k ∈ NRVZσ/2 with σ ∈ [0, γ − 1) and a positive constant b0 such that

(b2) limd(x)→0
b(x)

k2(d(x))
= b0,

then the unique solution uλ ∈ C(Ω) ∩ C2(Ω) to problem (1.1) satisfies

lim
uλ(x) = ξ0, (1.11)
d(x)→0 ϕ1(K(d(x)))
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where ξ0
−γ−1 = 2(γ−σ−1)

b0(2+σ)(γ−1)
and ϕ1 ∈ C[0, a] ∩ C2(0, a] is the solution to problem (1.3), i.e.,

ϕ1(t)∫
0

ds√
2G2(s)

= t, t ∈ [0, a] for small a > 0, (1.12)

K(t) =
t∫

0

k(s) ds, t ∈ [0, a]; G2(t) =
b∫

t

g(s) ds, t ∈ (0, b], b > 0. (1.13)

Moreover, ϕ1 ∈ NRVZ2/(1+γ ) and there exists y2 ∈ C(0, a] with lims→0+ y2(s) = 0 such that ϕ1(t) =
t2/(1+γ )e

∫ a
t

y2(s)

s
ds , t ∈ (0, a].

Corollary 1.1. When g(u) = u−γ with γ > 1 in Theorem 1.1, uλ satisfies

lim
d(x)→0

uλ(x)

[K(d(x))]2/(1+γ )
=

[
b0(2 + σ)(1 + γ )2

4(γ − σ − 1)

]1/(1+γ )

. (1.14)

Remark 1.1. By (1.12), we see that the asymptotic behaviour of uλ is independent of λ|∇uλ|q .

Remark 1.2. By (g1) and the proof of the maximum [12, Theorems 10.1 and 10.2], we see that problem (1.1) has at
most one solution in C2(Ω) ∩ C(Ω). For the existence of solutions to problem (1.1), see [28].

Remark 1.3. Some examples of the functions which satisfy the conditions in Theorem 1.1 are:

(1) g(u) = u−γ , where γ > 1;
(2) g(u) = u−γ arctan(u−1), where γ > 1;
(3) g(u) = u−γ1(ln(1 + u))−γ2 , where γ1 > 0, γ2 > 0 and γ1 + γ2 > 1;
(4) g(u) = u−γ1(eu − 1)−γ2 , where γ1 > 0, γ2 > 0 and γ1 + γ2 > 1;
(5) g(u) = u−γ (−lnu)p , where γ > 1, p ∈ R, 0 < u < a < 1;
(6) g(u) = u−γ e(−lnu)p , where γ > 1, p ∈ (0,1), 0 < u < a < 1;
(7) g(u) = u−γ (ln(−lnu))p , where γ > 1, p ∈ R, 0 < u < a < 1.

Remark 1.4. The key of the paper is the estimation of |∇u|q which is very different from that one in [28] and [30]
where the weight b is singular on the boundary.

The outline of this paper is as follows. In Section 2 we recall some basic the properties to Karamata regular variation
theory. The proof of Theorem 1.1 is given in Section 3.

2. Some basic definitions and the properties to Karamata regular variation theory

We recall some basic properties to Karamata regular variation theory (see [16,18,19]).

Proposition 2.1. If functions L,L1 are slowly varying at infinity, then:

(i) Lσ for every σ ∈ R, c1L + c2L1 (c1 � 0, c2 � 0 with c1 + c2 > 0), L ◦ L1 (if L1(t) → +∞ as t → +∞) are
also slowly varying at infinity.

(ii) For every θ > 0 and t → +∞,

tθL(t) → +∞, t−θL(t) → 0.

(iii) For ρ ∈ R and t → +∞, ln(L(t))/ ln t → 0 and ln(tρL(t))/ ln t → ρ.
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Proposition 2.2 (Asymptotic behaviour). If a function H is slowly varying at zero, then for a > 0 and t → 0+:

(i)
∫ t

0 sβH(s) ds ∼= (β + 1)−1t1+βH(t), for β > −1;
(ii)

∫ a

t
sβH(s) ds ∼= (−β − 1)−1t1+βH(t), for β < −1.

Let Ψ be non-decreasing on R, we define (as in [18]) the inverse of Ψ by

Ψ ←(t) = inf
{
s: Ψ (s) � t

}
. (2.1)

Proposition 2.3. (See [18, Proposition 0.8].) The following hold:

(i) if f1 ∈ RVρ1, f2 ∈ RVρ2, then f1 · f2 ∈ RVρ1+ρ2;
(ii) if f1 ∈ RVρ1, f2 ∈ RVρ2, with limt→+∞ f2(t) = +∞, then f1 ◦ f2 ∈ RVρ1ρ2;

(iii) if f is non-decreasing on (a,∞), f ∈ RVρ with ρ > 0, then f ← ∈ RVρ−1 .

By the above propositions, we can directly obtain the following results.

Corollary 2.1. If g satisfies (g1) and g ∈ NRVZ−γ with γ > 1, then:

(i) g(t) = t−γ exp(
∫ a

t
y(s)
s

ds), 0 < t < a, y ∈ C(0, a], lims→0+ y(s) = 0;
(ii) limt→0+ g(t) = +∞ = limt→0+ G2(t); limt→0+ G2(t)

g(t)
= 0 = limt→0+

√
G2(t)
g(t)

;
(iii) limt→0+ G2(t)

tg(t)
= 1

γ−1 ; limt→0+ tg′(t)
g(t)

= −γ.

Corollary 2.2. k in Theorem 1.1 has the following properties:

(i) k(t) = tσ/2 exp(
∫ a

t
y1(s)

s
ds) for t ∈ (0, a), y1 ∈ C(0, a], lims→0+ y1(s) = 0;

(ii) limt→0+ K(t)
k(t)

= 0; limt→0+ tk′(t)
k(t)

= σ
2 ; limt→0+ K(t)

tk(t)
= 2

2+σ
;

(iii) limt→0+ k′(t)K(t)

k2(t)
= limt→0+ tk′(t)

k(t)
limt→0+ K(t)

tk(t)
= σ

2+σ
.

3. The exact asymptotic behaviour

First we give some preliminary considerations.

Lemma 3.1. Under the assumption in Theorem 1.1:

(i) ϕ1 ∈ NRVZ2/(1+γ );
(ii) (g ◦ ϕ1 ◦ K)q−1 · Kq · kq−2 ∈ RVZβ with β = (2−q)γ+q(σ+1)−σ

1+γ
.

Proof. (i) Let f1(t) = ∫ t

0
ds√

2G2(s)
, ∀t ∈ (0, a). By l’Hospital’s rule and Proposition 2.3(iii), we can easily see that

f1 ∈ RVZ(1+γ )/2 and ϕ1 = f −1
1 ∈ RVZ2/(1+γ ). Moreover, we see by (1.10), the following Lemma 3.2(i) and Proposi-

tion 2.2(i) that ϕ′
1 ∈ NRVZ−(γ−1)/(γ+1) and limt→0+

tϕ′
1(t)

ϕ1(t)
= 2

γ+1 . Thus ϕ1 ∈ RVZ2/(1+γ ).
(ii) follows by (i) and Proposition 2.3. �

Lemma 3.2. Let g, k and ϕ1 be as in Theorem 1.1, then:

(i) limt→0+
ϕ′

1(t)

tϕ′′
1 (t)

= − γ+1
γ−1 ;

(ii) limt→0+
(ϕ′

1(t))
q

ϕ′′
1 (t)

= 0, q ∈ (0,2];
(iii) limt→0+

kq (t)(ϕ′
1(K(t)))q

2 ′′ = 0, q ∈ (0,2].

k (t)ϕ1 (K(t))
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Proof. We see by (1.12) and a direct calculation that

ϕ′
1(t) =

√
2G2

(
ϕ(t)

)
, −ϕ′′

1 (t) = g
(
ϕ1(t)

)
, 0 < t < a.

(i) It follows by Corollary 2.1 and l’Hospital’s rule that

lim
t→0+

ϕ′
1(t)

tϕ′′
1 (t)

= − lim
t→0+

√
2G2(ϕ(t))

tg(ϕ1(t))
= − lim

u→0+

√
2G2(u)/g(u)∫ u

0
ds√

2G2(s)

= −
(

1 + 2 lim
u→0+

g′(u)G2(u)

g2(u)

)

= −
(

1 + 2 lim
u→0+

ug′(u)

g(u)
lim

u→0+
G2(u)

ug(u)

)
= −γ + 1

γ − 1
.

(ii) It follows by Corollary 2.1 that

lim
t→0+

(ϕ′
1(t))

2

ϕ′′
1 (t)

= −2 lim
u→0+

G(u)

g(u)
= 0.

Since limt→0+ ϕ′
1(t) = +∞, we have

lim
t→0+

(ϕ′
1(t))

q

ϕ′′
1 (t)

= lim
t→0+

(ϕ′
1(t))

2

ϕ′′
1 (t)

lim
t→0+

(
ϕ′

1(t)
)q−2 = 0 for 0 < q < 2.

(iii) When q = 2, (ii) implies (iii). For q ∈ (0,2), since γ > 1 and σ ∈ [0, γ − 1), we see that q(1 + σ) > σ for
q ∈ [1,2) and (2 − q)γ > γ > σ for q ∈ (0,1). Thus (2 − q)γ + q(1 + σ) − σ > 0 for q ∈ (0,2). Since β > 0, we
see by Lemma 3.1(ii) and Proposition 2.1(ii) that

lim
t→0+

(
g
(
ϕ1

(
K(t)

)))q−1
Kq(t)kq−2(t) = lim

t→0+ tβH(t) = 0, (3.1)

where H is slowly varying at zero.
It follows that

lim
t→0+

kq(t)(ϕ′
1(K(t)))q

k2(t)ϕ′′
1 (K(t))

= lim
t→0+

(
ϕ′

1(K(t))

−K(t)ϕ′′
1 (K(t))

)q

lim
t→0+

(−ϕ′′
1

(
K(t)

))q−1
Kq(t)kq−2(t)

=
(

γ + 1

γ − 1

)q

lim
t→0+

(
g
(
ϕ1

(
K(t)

)))q−1
Kq(t)kq−2(t)

= 0.

The proof is finished. �
Proof of Theorem 1.1. Let ξ

−(1+γ )

0 = τ0/b0, where

τ0 = 2(γ − σ − 1)

(2 + σ)(γ − 1)
> 0, 1 − τ0 = 2(γ + 1)

(2 + σ)(γ − 1)
> 0.

Fix ε ∈ (0, τ0/4) and let

ξ1ε =
(

b0

τ0 − 2ε

)1/(1+γ )

, ξ2ε =
(

b0

τ0 + 2ε

)1/(1+γ )

.

It follows that(
2b0

3τ0

)1/(1+γ )

= C1 < ξ2ε < ξ0 < ξ1ε < C2 =
(

2b0

τ0

)1/(1+γ )

.

Since ∂Ω ∈ C2, there exists a constant δ ∈ (0, δ0/2) which only depends on Ω such that

(i) d(x) ∈ C2(Ωδ) and |∇d| ≡ 1 on Ωδ = {x ∈ Ω: d(x) < δ}.

By (b1), (b2), Corollary 2.2 and Lemma 3.2, we see that corresponding to ε, there is δε ∈ (0, δ) sufficiently small
such that:
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(ii) for i = 1,2,∣∣∣∣k′(d(x))K(d(x))

k2(d(x))

ϕ′
1(s)

sϕ′′
1 (s)

− (τ0 − 1) + K(d(x))

k(d(x))

ϕ′
1(s)

sϕ′′
1 (s)

�d(x) + λξ
q−1
iε kq(d(x))

k2(d(x))

(ϕ′
1(K(d(x))))q

ϕ′′
1 (K(d(x)))

∣∣∣∣ < ε,

∀(x, s) ∈ Ωδε × (0, δε);

(iii)
ξ2εk

2(d(x))g(ϕ1(K(d(x))))

g(ξ2εϕ1(K(d(x))))
(τ0 + ε) < b(x) <

ξ1εk
2(d(x))g(ϕ1(K(d(x))))

g(ξ1εϕ1(K(d(x))))
(τ0 − ε), x ∈ Ωδε .

Let ūε = ξ1εϕ1(K(d(x))), uε = ξ2εϕ1(K(d(x))), x ∈ Ωδε . We see that for x ∈ Ωδε

�ūε(x) + b(x)g
(
ūε(x)

) + λ
∣∣∇ūε(x)

∣∣q
= ξ1εϕ

′′
1

(
K

(
d(x)

))
k2(d(x)

) + ξ1εϕ
′
1

(
K

(
d(x)

))
k′(d(x)

) + ξ1εϕ
′
1

(
K

(
d(x)

))
k
(
d(x)

)
�d(x)

+ b(x)g
(
ξ1ϕ1

(
K

(
d(x)

))) + λξ
q

1ε

(
ϕ′

1

(
K

(
d(x)

)))q
kq

(
d(x)

)
= ξ1εg

(
ϕ1

(
K

(
d(x)

)))
k2(d(x)

)[ b(x)g(ξ1εϕ1(K(d(x))))

ξ1εk2(d(x))g(ϕ1(K(d(x))))
− τ0

−
(

k′(d(x))K(d(x))

k2(d(x))

ϕ′
1(K(d(x)))

K(d(x))ϕ′′
1 (K(d(x)))

− (τ0 − 1)

)

− K(d(x))

k(d(x))

ϕ′
1(K(d(x)))

K(d(x))ϕ′′
1 (K(d(x)))

�d(x) − λξ
q−1
1ε kq(d(x))

k2(d(x))

(ϕ′
1(K(d(x))))q

ϕ′′
1 (K(d(x)))

]
� 0

and

�uε(x) + b(x)g
(
uε(x)

) + λ
∣∣∇uε(x)

∣∣q
= ξ2εϕ

′′
1

(
K

(
d(x)

))
k2(d(x)

) + ξ2εϕ
′
1

(
K

(
d(x)

))
k′(d(x)

) + ξ2εϕ
′
1

(
K

(
d(x)

))
k
(
d(x)

)
�d(x)

+ b(x)g
(
ξ2εϕ1

(
K

(
d(x)

))) + λξ
q

2εk
q
(
d(x)

)(
ϕ′

1

(
K

(
d(x)

)))q

= ξ2εg
(
ϕ1

(
K

(
d(x)

)))
k2(d(x)

)[ b(x)g(ξ2εϕ1(K(d(x))))

ξ2εk2(d(x))g(ϕ1(K(d(x))))
− τ0

−
(

k′(d(x))K(d(x))

k2(d(x))

ϕ′
1(K(d(x)))

K(d(x))ϕ′′
1 (K(d(x)))

− (τ0 − 1)

)

− K(d(x))

k(d(x))

ϕ′
1(K(d(x))

K(d(x))ϕ′′
1 (K(d(x)))

�d(x) − λξ
q−1
2ε kq(d(x))

k2(d(x))

(ϕ′
1(K(d(x))))q

ϕ′′
1 (K(d(x)))

]
� 0.

Let uλ ∈ C(Ω) ∩ C2+α(Ω) be the unique solution to problem (1.1). We assert uε(x) � uλ(x) � ūε(x), ∀x ∈ Ωδε . In
fact, denote Ωδε = Ωδ+ ∪ Ωδ−, where Ωδ+ = {x ∈ Ωδε : uλ(x) � uε(x)} and Ωδ− = {x ∈ Ωδε : uλ(x) < uε(x)}. We
need to show Ωδ− = ∅. Assume the contrary, we see that there exists x0 ∈ Ωδ− (note that uε(x) = uλ(x), ∀x ∈ ∂Ωδ−)
such that

0 < uε(x0) − uλ(x0) = max
x∈Ωδ−

(
uε(x) − uλ(x)

)
and

∇uε(x0) = ∇uλ(x0), �(uε − uλ)(x0) � 0.

On the other hand, we see by (b1) and (g1) that

−�(uλ − uε)(x0) = b(x0)
(
g
(
uε(x0)

) − g
(
uλ(x0)

))
< 0,
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which is a contradiction. Hence Ωδ− = ∅, i.e., u(x) � uε(x) in Ωδ. In the same way, we can see that uλ(x) � ūε(x),
∀x ∈ Ωδ. It follows that

ξ2ε � lim
d(x)→0

inf
uλ(x)

ϕ1(K(d(x)))
� lim

d(x)→0
sup

uλ(x)

ϕ1(K(d(x)))
� ξ1ε.

Thus let ε → 0, we see that

lim
d(x)→0

uλ(x)

ϕ1(K(d(x)))
= ξ0.

The last part of the proof follows from Lemma 3.1(i). �
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