22 research outputs found

    Controlled modification of the inorganic and organic bricks in an Al-based MOF by direct and post-synthetic synthesis routes

    Get PDF
    Four new porous CAU-1 derivatives CAU-1–NH2 ([Al4(OH)2(OCH3)4(BDC–NH2)3]·xH2O, BDC–NH22− = aminoterephthalate), CAU-1–NH2(OH) ([Al4(OH)6(BDC–NH2)3]·xH2O), CAU-1–NHCH3 ([Al4(OH)2(OCH3)4(BDC–NHCH3)3]·xH2O) and CAU-1–NHCOCH3 ([Al4(OH)2(OCH3)4(BDC–NHCOCH3)3]·xH2O) all containing an octameric [Al8(OH)4+y(OCH3)8−y]12+ cluster, with y = 0–8, have been obtained by MW-assisted synthesis and post-synthetic modification. The inorganic as well as the organic unit can be modified. Heteronuclear 1H–15N, 1H–13C and homonuclear 1H–1H connectivities determined by solid-state NMR spectroscopy prove the methylation of the NH2 groups when conventional heating is used. Varying reaction times and temperatures allow controlling the degree of methylation of the amino groups. Short reaction times lead to non-methylated CAU-1 (CAU-1–NH2), while longer reaction times result in CAU-1–NHCH3. CAU-1–NH2 can be modified chemically by using acetic anhydride, and the acetamide derivative CAU-1–NHCOCH3 is obtained. Thermal treatment permits us to change the composition of the Al-containing unit. Methoxy groups are gradually exchanged by hydroxy groups at 190 °C in air. Solid-state NMR spectra unequivocally demonstrate the presence of the amino groups, as well as the successful post-synthetic modification. Furthermore 1H–1H correlation spectra using homonuclear decoupling allow the orientation of the NHCOCH3 groups within the pores to be unravelled. The influence of time and temperature on the synthesis of CAU-1 was studied by X-ray powder diffraction, elemental analyses, and 1H liquid-state NMR and IR spectroscopy

    Ion conduction and phase morphology in sulfonate copolymer ionomers based on ionic liquid–sodium cation mixtures

    Full text link
    A series of sulfonate based copolymer ionomers based on a combination of ionic liquid and sodium cations have been prepared in different ratios. This system was designed to improve the ionic conductivity of ionomers by partially replacing sodium cations with bulky cations that are less associated with anion centres on the polymer backbone. This provides more conduction sites for sodium to ‘hop’ to in the ionomers. Characterization showed the glass transition and 15N chemical shift of the ionomers did not vary significantly as the amount of Na+ varied, while the ionic conductivity increased with decreasing Na+ content, indicating conductivity is increasingly decoupled from Tg. Optical microscope images showed phase separation in all compositions, which indicated the samples were inhomogeneous. The introduction of low molecular weight plasticizer (PEG) reduced the Tg and increased the ionic conductivity significantly. The inclusion of PEG also led to a more homogeneous material

    Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-doped Multilayer Graphene

    Full text link
    Active sites and catalytic mechanism of nitrogen-doped graphene in oxygen reduction reaction (ORR) have been extensively studied but are still inconclusive, partly due to the lack of an experimental method that can detect the active sites. It is proposed in this report that the active sites on nitrogen-doped graphene can be determined via the examination of its chemical composition change before and after ORR. Synchrotron-based X-ray photoelectron spectroscopy analyses of three nitrogen-doped multilayer graphene samples reveal that oxygen reduction intermediate OH(ads) which should chemically attach to the active sites remains on the carbon atoms neighboring pyridinic nitrogen after ORR. In addition, a high amount of the OH(ads) attachment after ORR corresponds to a high catalytic efficiency and vice versa. These pinpoint that the carbon atoms close to pyridinic nitrogen are the main active sites among the different nitrogen doping configurations

    Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries

    Full text link
    With the expected theoretical capacity of 2596 mA h g-1, phosphorus is considered to be the highest capacity anode material for sodium-ion batteries and one of the most attractive anode materials for lithium-ion systems. This work presents a comprehensive study of phosphorus-carbon nanocomposite anodes for both lithium-ion and sodium-ion batteries. The composite electrodes are able to display high initial capacities of approximately 1700 and 1300 mA h g-1 in lithium and sodium half-cells, respectively, when the cells are tested within a larger potential windows of 2.0-0.01 V vs. Li/Li+ and Na/Na+. The level of demonstrated capacity is underpinned by the storage mechanism, based on the transformation of phosphorus to Li3P phase for lithium cells and an incomplete transformation to Na3P phase for sodium cells. The capacity deteriorates upon cycling, which is shown to originate from disintegration of electrodes and their delamination from current collectors by post-cycling ex situ electron microscopy. Stable cyclic performance at the level of ∼700 and ∼350-400 mA h g-1 can be achieved if the potential windows are restricted to 2.0-0.67 V vs. Li/Li+ for lithium and 2-0.33 vs. Na/Na+ for sodium half-cells. The results are critically discussed in light of existing literature report

    The Relationship between Regular Sports Participation and Vigilance in Male and Female Adolescents

    Get PDF
    The present study investigated the relationship between regular sport participation (soccer) and vigilance performance. Two groups of male and female adolescents differentiated in terms of their sport participation (athletes, n = 39, and non-athletes, n = 36) took part in the study. In one session, participants performed the Leger Multi-stage fitness test to estimate their aerobic fitness level. In the other session, participants completed the Psychomotor Vigilance Task (PVT) to evaluate their vigilance performance. Perceived arousal prior to the task and motivation toward the task were also measured in the PVT session. The results revealed that athletes had better cardiovascular fitness and showed better performance in the PVT. However, correlation analyses did not show any significant relationship between cardiovascular fitness and performance in the PVT. Athletes showed larger scores in motivation and perceived arousal measures with respect to non-athletes, although, once again, these variables were not correlated with PVT performance. Gender differences were observed only in the Leger test, with males showing greater fitness level than females. The major outcome of this research points to a positive relationship between regular sport participation and vigilance during adolescence. This relationship did not seem to be influenced by gender, perceived arousal, motivation toward the task or cardiovascular fitness. We discuss our results in terms of the different hypotheses put forward in the literature to explain the relationship between physical activity and cognitive functioning.This research was supported by a Spanish Ministerio de Educación y Cultura (https://sede. educacion.gob.es) predoctoral grant (FPU13-05605) to the first author, and project research grants: Junta de Andalucia Proyecto de Excelencia SEJ-6414 (http://www.juntadeandalucia.es) and Ministerio de Economía y Competitividad PSI2013-46385 (http://www.mineco.gob.es) to DS and FH

    Protonated melonate Ca[HC6N7(NCN)3]·7H2O – synthesis, crystal structure, and thermal properties

    Full text link
    Calcium hydrogenmelonate heptahydrate Ca[HC6N7(NCN)3]·7H2O was obtained by metathesis reaction in aqueous solution. The structure of the molecular salt was elucidated by single-crystal X-ray diffraction. The crystal structure consists of alternating layers of planar monopronated melonate ions, Ca2+ and crystal water molecules. The anions of adjacent layers are staggered so that no π–π stacking occurs. The melonate entities are interconnected by hydrogen bonds within and between the layers. Ca[HC6N7(NCN)3]·7H2O was investigated by solid-state NMR and FTIR spectroscopy, TG and DTA measurements

    A study of phase behavior and conductivity of mixtures of the organic ionic plastic crystal N-methyl-N-methyl-pyrrolidinium dicyanamide with sodium dicyanamide

    Full text link
    We report on the thermal, structural and conductivity properties of the organic ionic plastic crystal (OIPC) N-methyl-N-methyl-pyrrolidinium dicyanamide [C1mpyr][N(CN)2] mixed with the sodium salt Na[N(CN)2]. The DSC thermal traces indicate that an isothermal transition, which may be a eutectic melting, occurs at ~ 89 °C, below which all compositions are entirely in the solid phase. At 20 mol% Na[N(CN)2], this transition is the final melt for this mixture, and a new liquidus peak grows beyond 20 mol% Na[N(CN)2]. The III- > II solid-solid phase transition continues to be evident at ~- 2 °C. The microstructure for all the mixtures indicated a phase separated morphology where precipitates can be clearly observed. Most likely, these precipitates consist of a Na-rich second phase. This was also suggested from the vibrational spectroscopy and the 23Na NMR spectra. The lower concentrations of Na[N(CN)2] present complex 23Na MAS spectra, suggesting more than one sodium ion environment is present in these mixtures consistent with complex phase behavior. Unlike other OIPCs where the ionic conductivity usually increases upon doping or mixing in a second component, the conductivity of these mixtures remains relatively constant and above 10- 4 S cm- 1 at ∼ 80 °C, even in the solid state. Such high conductivities suggest these materials may be promising to be used for all solid-state electrochemical devices

    Pensamiento histórico, problemas sociales y cultura digital en la enseñanza de la historia

    Get PDF
    In this work we present a case study carried out with two groups of students -a 4th. and a 5th. year- of public schools of the secondary level in the province of Neuquén, in the Argentine North-Patagonia. We have approached a relevant and burning social problem to identify to what extent it contributes to the development of historical thought or, in other words, if the student body thinks historically about social problems. The results indicate that although it is important to take into account temporary operators such as change and continuity, in a way that allows their historical understanding, with the use of sources of information or necessary evidence, Social Representations play a role of It is of great importance that if they are not addressed throughout the teaching and learning process, they can generate a difficulty for the realization of the objectives pursued. In our critical qualitative research, we built a didactic sequence with the use of digital devices that allowed us to obtain the information and data necessary for the analysis. It was developed in a pandemic context that challenged us in its reformulation -because it was initially thought to be worked on in person- and to think about how the students would respond to the development of the proposed activities, with the use of digital devices, in the virtuality. The following is the analysis of the results achieved in this investigative process.En este trabajo presentamos un estudio de caso realizado con dos grupos de estudiantes -un 4to. y un 5to. año- de escuelas públicas del nivel medio en la provincia de Neuquén, en la norpatagonia Argentina. Hemos abordado un problema social relevante y candente para identificar en qué medida contribuye al desarrollo del pensamiento histórico o dicho de otro modo, si el estudiantado piensa históricamente los problemas sociales. Los resultados indican que si bien es importante tener en cuenta los operadores temporales como el cambio y la continuidad, de manera que permita la comprensión histórica de los mismos, con la utilización de fuentes de información o evidencias necesarias, la Representaciones Sociales cobran un papel de gran importancia que si no se abordan en todo el proceso de enseñanza y de aprendizaje, pueden generar una dificultad para la concreción de la finalidades perseguidas. En nuestra investigación, cualitativa crítica, construimos una secuencia didáctica con la utilización de dispositivos digitales que nos permitió obtener la información y los datos necesarios para el análisis. La misma se desarrolló en un contexto pandemia que nos desafió en su reformulación -porque inicialmente se pensó para ser trabajada en la presencialidad- y a pensar cómo las y los estudiantes responderían al desarrollo de las actividades propuestas, con la utilización de dispositivos digitales, en la virtualidad. A continuación, se expone el análisis de los resultados alcanzados en este proceso investigativo

    Examining the Role of Task Requirements in the Magnitude of the Vigilance Decrement

    No full text
    The vigilance decrement in sustained attention tasks is a prevalent example of cognitive fatigue in the literature. A critical challenge for current theories is to account for differences in the magnitude of the vigilance decrement across tasks that involve memory (successive tasks) and those that do not (simultaneous tasks). The empirical results described in this paper examine this issue by comparing performance, including eye movement data, between successive and simultaneous tasks that require multiple fixations to encode the stimulus for each trial. The findings show that differences in the magnitude of the vigilance decrement between successive and simultaneous tasks were observed only when a response deadline was imposed in the analysis of reaction times. This suggests that memory requirements did not exacerbate the deleterious impacts of time on task on the ability to accurately identify the critical stimuli. At the same time, eye tracking data collected during the study provided evidence for disruptions in cognitive processing that manifested as increased delays between fixations on stimulus elements and between encoding the second stimulus element and responding. These delays were particularly pronounced in later stages of encoding and responding. The similarity of the findings for both tasks suggests that the vigilance decrement may arise from common mechanisms in both cases. Differences in the magnitude of the decrement arise as a function of how degraded cognitive processing interacts with differences in the information processing requirements and other task characteristics. The findings are consistent with recent accounts of the vigilance decrement, which integrate features of prior theoretical perspectives
    corecore