353 research outputs found

    Measurements of CH4, N2O, CO, H2O and O3 in the middle atmosphere by the ATMOS experiment on Spacelab 3

    Get PDF
    The volume mixing ratios of five minor gases (CH4, N2O, CO, H2O, and O3) were retrieved through the middle atmosphere from the analysis of 0.01/cm resolution infrared solar occultation spectra recorded near 28 N and 48 S latitudes with the ATMOS (Atmospheric Trace Molecule Spectroscopy) instrument, flown on board Spacelab 3. The results, which constitute the first simultaneous observations of continuous profiles through the middle atmosphere for these gases, are in general agreement with reported measurements from ground, balloon and satellite-based instruments for the same seasons. In detail, the vertical profiles of these gases show the effects of the upper and middle atmospheric transport patterns dominant during the season of these observations. The profiles inferred at different longitudes around 28 N suggest a near-uniform zonal distribution of these gases. Although based on fewer observations, the sunrise occultation measurements point to a larger variability in the vertical distribution of these gases at 48 S

    On the theory of composition in physics

    Full text link
    We develop a theory for describing composite objects in physics. These can be static objects, such as tables, or things that happen in spacetime (such as a region of spacetime with fields on it regarded as being composed of smaller such regions joined together). We propose certain fundamental axioms which, it seems, should be satisfied in any theory of composition. A key axiom is the order independence axiom which says we can describe the composition of a composite object in any order. Then we provide a notation for describing composite objects that naturally leads to these axioms being satisfied. In any given physical context we are interested in the value of certain properties for the objects (such as whether the object is possible, what probability it has, how wide it is, and so on). We associate a generalized state with an object. This can be used to calculate the value of those properties we are interested in for for this object. We then propose a certain principle, the composition principle, which says that we can determine the generalized state of a composite object from the generalized states for the components by means of a calculation having the same structure as the description of the generalized state. The composition principle provides a link between description and prediction.Comment: 23 pages. To appear in a festschrift for Samson Abramsky edited by Bob Coecke, Luke Ong, and Prakash Panangade

    The 2015-2016 El Nino and the Response of the Carbon Cycle: Findings from NASA's OCO-2 Mission

    Get PDF
    The El Nino Southern Oscillation (ENSO) is the most important mode of tropical climate variability on interannual to decadal time scales. Correlations between atmospheric CO2 growth rate and ENSO activity are relatively well known but the magnitude of this correlation, the contribution from tropical marine vs. terrestrial flux components, and the causal mechanisms, are poorly constrained in space and time. The launch of NASA's Orbiting Carbon Observatory-2 (OCO-2) mission in July 2014 was rather timely given the development of strong ENSO conditions over the tropical Pacific Ocean in 2015-2016. In this presentation, we will discuss how the high-density observations from OCO-2 provided us with a novel dataset to resolve the linkages between El Nino and atmospheric CO2. Along with information from in situ observations of pCO2 from NOAA's Tropical Atmosphere Ocean (TAO) project and atmospheric CO2 from the Scripps CO2 Program, and other remote-sensing missions, we are able to piece together the time dependent response of atmospheric CO2 concentrations over the Tropics. Our findings confirm the hypothesis from studies following the 1997-1998 El Nino event that an early reduction in CO2 outgassing from the tropical Pacific Ocean is later reversed by enhanced net CO2 emissions from the terrestrial biosphere. This implies that a component of the interannual variability (IAV) in the growth rate of atmospheric CO2, which has typically been used to constrain the climate sensitivity of tropical land carbon fluxes, is strongly influenced and modified by ocean fluxes during the early phase of the ENSO event. Our analyses shed further light on the understanding of the marine vs. terrestrial partitioning of tropical carbon fluxes during El Nino events, their relative contributions to the global atmospheric CO2 growth rate, and provide clues about the sensitivity of the carbon cycle to climate forcing on interannual time scales

    Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation III: Coded Aperture Mask and Fresnel Zone Plates in RT-2/CZT Payload

    Full text link
    Imaging in hard X-rays of any astrophysical source with high angular resolution is a challenging job. Shadow-casting technique is one of the most viable options for imaging in hard X-rays. We have used two different types of shadow-casters, namely, Coded Aperture Mask (CAM) and Fresnel Zone Plate (FZP) pair and two types of pixellated solid-state detectors, namely, CZT and CMOS in RT-2/CZT payload, the hard X-ray imaging instrument onboard the CORONAS-PHOTON satellite. In this paper, we present the results of simulations with different combinations of coders (CAM & FZP) and detectors that are employed in the RT-2/CZT payload. We discuss the possibility of detecting transient Solar flares with good angular resolution for various combinations. Simulated results are compared with laboratory experiments to verify the consistency of the designed configuration.Comment: 27 pages, 16 figures, Accepted for publication in Experimental Astronomy (in press

    Virus-virus interactions impact the population dynamics of influenza and the common cold

    Get PDF
    The human respiratory tract hosts a diverse community of cocirculating viruses that are responsible for acute respiratory infections. This shared niche provides the opportunity for virus–virus interactions which have the potential to affect individual infection risks and in turn influence dynamics of infection at population scales. However, quantitative evidence for interactions has lacked suitable data and appropriate analytical tools. Here, we expose and quantify interactions among respiratory viruses using bespoke analyses of infection time series at the population scale and coinfections at the individual host scale. We analyzed diagnostic data from 44,230 cases of respiratory illness that were tested for 11 taxonomically broad groups of respiratory viruses over 9 y. Key to our analyses was accounting for alternative drivers of correlated infection frequency, such as age and seasonal dependencies in infection risk, allowing us to obtain strong support for the existence of negative interactions between influenza and noninfluenza viruses and positive interactions among noninfluenza viruses. In mathematical simulations that mimic 2-pathogen dynamics, we show that transient immune-mediated interference can cause a relatively ubiquitous common cold-like virus to diminish during peak activity of a seasonal virus, supporting the potential role of innate immunity in driving the asynchronous circulation of influenza A and rhinovirus. These findings have important implications for understanding the linked epidemiological dynamics of viral respiratory infections, an important step towards improved accuracy of disease forecasting models and evaluation of disease control interventions

    Severe Unresolved Cholestasis Due to Unknown Etiology Leading to Early Allograft Failure Within the First 3 Months of Liver Transplantation

    Get PDF
    Background Causes of severe cholestasis after liver transplantation (LT) are multi-factorial. Although the etiology is predictable in some, others culminate in graft/patient loss without a definitive cause identified. Severe cholestasis is usually associated with overlapped histological findings of rejection and biliary features, and diagnostic interpretation may pose a challenge.Methods This is 10-year retrospective analysis of patients with unexplained severe cholestasis resulting in death/graft loss within 90 days of LT. Of 1 583 LT during the study period, 90-day graft failure occurred in 129 (8%) cases; a total of 45 (3%) patients had unresolving severe cholestasis (bilirubin, >100 mol/L; alkaline phosphatase, >400 UI/L after 15 days from LT), excluding those due to primary nonfunction/sepsis/vascular causes (n = 84). Demographics, allograft biopsies, radiological investigations, and clinical outcome were analyzed.Results All patients had persistent abnormal liver biochemistry. Doppler ultrasound scan was normal in all cases. Thirty-five (78%) recipients had at least 1 allograft biopsy (2 [1-9]). On the first biopsy, 22 (63%) patients had acute rejection, 4 (18%) early-chronic rejection, 12 (34%) antibody-mediated rejection. In subsequent biopsies chronic rejection was evident in 5 (14%) cases. Donor-specific antibodies were detected in all patients tested. Biliary anatomy was studied in detail in 9 (20%) patients, all presenting biliary strictures. The majority (n = 39; 87%) died within 32 (10-91) days, only survivors were from retransplantation (n = 3;6.5%) and biliary intervention (n = 3;6.5%).Conclusions Unresolving severe cholestasis after LT is a key parameter predicting patient/allograft outcome. Histologically, rejection seems to overlap with biliary strictures; hence, allograft biopsy with signs of rejection should not be a reason to overlook biliary problems, in particular when biliary features are present. Only extensive radiological investigation/intervention or retransplantation prevents patient/allograft loss

    The 2015-2016 El Nino and the Response of the Carbon Cycle: Findings from NASA's OCO-2 Mission

    Get PDF
    The El Nino Southern Oscillation (ENSO) is the most important mode of tropical climate variability on interannual to decadal time scales. Correlations between atmospheric CO2 growth rate and ENSO activity are relatively well known but the magnitude of this correlation, the contribution from tropical marine vs. terrestrial flux components, and the causal mechanisms, are poorly constrained in space and time. The launch of NASA's Orbiting Carbon Observatory-2 (OCO-2) mission in July 2014 was rather timely given the development of strong ENSO conditions over the tropical Pacific Ocean in 2015-2016. In this presentation, we will discuss how the high-density observations from OCO-2 provided us with a novel dataset to resolve the linkages between El Nino and atmospheric CO2. Along with information from in situ observations of CO2 from NOAA's Tropical Atmosphere Ocean (TAO) project and atmospheric CO2 from the Scripps CO2 Program, and other remote-sensing missions, we are able to piece together the time dependent response of atmospheric CO2 concentrations over the Tropics. Our findings confirm the hypothesis from studies following the 1997-1998 El Nino event that an early reduction in CO2 outgassing from the tropical Pacific Ocean is later reversed by enhanced net CO2 emissions from the terrestrial biosphere. This implies that a component of the interannual variability (IAV) in the growth rate of atmospheric CO2, which has typically been used to constrain the climate sensitivity of tropical land carbon fluxes, is strongly influenced and modified by ocean fluxes during the early phase of the ENSO event. Our analyses shed further light on the understanding of the marine vs. terrestrial partitioning of tropical carbon fluxes during El Nino events, their relative contributions to the global atmospheric CO2 growth rate, and provide clues about the sensitivity of the carbon cycle to climate forcing on interannual time scales

    Jack vertex operators and realization of Jack functions

    Full text link
    We give an iterative method to realize general Jack functions from Jack functions of rectangular shapes. We first show some cases of Stanley's conjecture on positivity of the Littlewood-Richardson coefficients, and then use this method to give a new realization of Jack functions. We also show in general that vectors of products of Jack vertex operators form a basis of symmetric functions. In particular this gives a new proof of linear independence for the rectangular and marked rectangular Jack vertex operators. Thirdly a generalized Frobenius formula for Jack functions was given and was used to give new evaluation of Dyson integrals and even powers of Vandermonde determinant.Comment: Expanded versio
    • …
    corecore