

The 2015-2016 El Niño and the response of the carbon cycle : findings from NASA's OCO-2 mission

Abhishek Chatterjee^{1,2}, D. Schimel³, B. Stephens⁴, D. Crisp³, A. Eldering³, R. Feely⁵, M. Gierach³, M. Gunson³, R. Keeling⁶, P. Landschützer⁷, A. Sutton^{5,8}, B. Weir^{1,2}

¹NASA Global Modeling and Assimilation Office, USA
 ³ Jet Propulsion Laboratory, Caltech, USA
 ⁵NOAA Pacific Marine Environmental Lab, USA
 ⁷ Max Planck Institute for Meteorology, DEU

² Universities Space Research Association, USA
⁴ National Center for Atmospheric Research, USA
⁶ Scripps Institution of Oceanography, USA
⁸ JISAO, Univ. of Washington, USA

AGU Fall Meeting

New Orleans 11 December 2017

Focus of this talk

□ OCO-2 provides a first-hand look at the space-time evolution of tropical atmospheric CO₂ concentrations in response to the 2015-2016 El Niño

□ The tropical Pacific Ocean plays an early and important role in modulating the changes in atmospheric CO₂ concentrations during El Niño events

Net impact of El Niño on the global carbon cycle is an increase in atmospheric CO₂ concentrations

The ENSO - CO_2 story ...

- Correlations between atmospheric CO₂ growth rate and ENSO activity have been reported since the 1970s
 Bacastow [1976], [1980]; Newell and Weare [1977]; Keeling et al. [1985]
- □ Studying the response of CO₂ to ENSO → how feedbacks between the physical climate system and global carbon cycle operates

Does OCO-2 observations provide insight into the relationship between ENSO and the carbon cycle?

Observable trends in 2015-2016

Time-series showing the temporal evolution of X_{CO2} anomalies over Niño 3.4

Sep 2014 – May 2016

•

Carbon system in the Tropical Pacific

Normal conditions: upwelling of cold subsurface waters that have high potential *p*CO₂
 + inefficient biological pump → strong CO₂ outgassing

□ El Niño conditions: deepening of thermocline, reduction in upwelling, weakening of trade winds + more efficient biological pump → decreases CO₂ outgassing by 40-60%

basin and that interannual variations in sea-surface temperature, surface winds and thermocline characterize El Niño.

GMAO

Air-sea CO₂ flux in the Tropical Pacific

/ Pg(

-

Ocean BGC models

Estimate of trop. Pacific flux: 0.4 - 0.6 PgC yr⁻¹
 Area of trop. Pacific – Ishii definition (~66 million km²), Niño 3.4 (~6 million km²)

Response of the ocean carbon cycle

7

0CO2

8

ÓC-Ó

Response of the terrestrial carbon cycle

- increase in emissions from biomass burning
- warmer and drier climate overall reduction in biospheric activity

Response of the terrestrial carbon cycle

Courtesy: Annmarie Eldering, Junjie Liu and Karen Yuan (JPL)

Putting it all together...

□ Onset Phase of ENSO: Spring-Summer 2015

reduction in CO₂ outgassing over the tropical Pacific

 negative CO₂ anomalies throughout but with
 perceptible west-east gradients

□ Mature Phase of ENSO: Fall 2015 onwards

 increase in CO₂ anomalies registered over the tropical Pacific –combination of reduced biospheric activity and increase in fire activity

Chatterjee et al. [2017], Science

Ocean vs. Land contribution during ENSO

GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO.4, PAGES 493-496, FEBRUARY 15, 1999

The relationship between tropical CO_2 fluxes and the El Niño-Southern Oscillation

Peter J. Rayner¹ and Rachel M. Law CRC for Southern Hemisphere Meteorology, Monash University, Clayton, Australia

> transition (from negative to positive) being matched to the end of the ENSO event. It seems likely that the initial response of tropical CO_2 fluxes to ENSO occurs in the ocean and the response is later offset then reversed by terrestrial responses.

> Acknowledgments. This study was carried out with the support of the Australian Government through its Cooperative

molecules arrive at the surface, only a fraction of them stick or adsorb onto it^{18,27}. Compared with non-template proteins, a template protein entering its imprint will have a higher likelihood of being retained as a result of interlocking within a pit and subsequently binding strongly to it. In addition, adsorbed protein on a low-adsorptivity surface can exchange with dissolved protein in solution^{5,36}. Non-template protein that does not fit into a pit is more readily displaced than template protein³⁷, because the pit occupied by the template protein is no longer accessible to solution-phase protein. The hydrophilic, crosslinked sugars on protein instrints, in contrast to hydrophobic surfaces, allow for a lower protein-sticking probability and a higher protein exchangeability. Both of these processes lead to 'recognition of the fittest' through dynamic adsorption–exchange, which we believe is essential for protein recognition.

Received 30 July 1998; accepted 23 February 1999.

Vijayalakshmi, M. A. Pseudobiospecific ligand affinity chromatography. Trends Biotechnol. 7, 71-	-76
(1989).	

- Byfield, M. P. & Abuknesha, R. A. Biochemical aspects of biosensors. *Biosens. Bioelect.* 9, 373–400 (1994). Ratner, B. D. The engineering of biomaterials exhibiting recognition and specificity. J. Mol. Recogn. 9, 617–625 (1996).
- Ratner, B. D. New ideas in biomaterials science—a path to engineered biomaterials. J. Biomed. Mat. Res. 27, 837–850 (1993).Brash, J. L. im Biomaterials: Interfacial Phenomenon and Applications, ACS Advances in Chemistry

OF CLIMATE 1 NOVEMBER 2001

Influence of El Niño on the equatorial Pacific contribution to atmospheric CO₂ accumulation

Richard A. Feely*, Rik Wanninkhof†, Taro Takahashi‡ & Pieter Tans§

* Pacific Marine Environmental Laboratory, NOAA, 7600 Sand Point Way NE, Seattle, Washington 98115-0070, USA

[†] Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, Florida 33149, USA [‡] Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA

§ Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder, Colorado 80303, USA

The equatorial oceans are the dominant oceanic source of CO₂ to the atmosphere, annually amounting to a net flux of 0.7–1.5 Pg (10¹⁵ g) of carbon, up to 72% of which emanates from the equatorial Pacific Ocean^{1–3}. Limited observations indicate that the size of the equatorial Pacific source is significantly influenced by El Niño events^{4–19}, but the effect has not been well quantified. Here we report spring and autumn multiannual measurements of the partial pressure of CO₂ in the surface ocean and atmosphere in the equatorial Pacific region. During the 1991–94 El Niño period,

Ilan Magazines Ltd

Jones et al. [2001]

at al [100

597

Feely et al. [1999]

The Carbon Cycle Response to ENSO: A Coupled Climate-Carbon Cycle Model Study

CHRIS D. JONES, MATTHEW COLLINS, PETER M. COX, AND STEVEN A. SPALL

Hadley Centre, Met Office, Bracknell, Berkshire, United Kingdom

(Manuscript received 30 October 2000, in final form 24 April 2001)

ABSTRACT

There is significant interannual variability in the atmospheric concentration of carbon dioxide (CO_2) even when the effect of anthropogenic sources has been accounted for. This variability is well correlated with the El Niño-Southern Oscillation (ENSO) cvcle. This behavior of the natural carbon cvcle provides a valuable mech-

12

National Aeronautics and Space Administration

Time lag in the observed atmospheric CO₂ signal

"far-away" surface sites observe with a 3-6 month lag
 ocean signal gets diluted by the land signal
 OCO-2 observes directly over the region of action

1	- 4 - 1	100041
Jones	et al.	[2001]

CO₂ lags with Niño-3 SST

TABLE 1. Correlation coefficient	s and lags between atmospheric C	CO2 concentration at various fla	sk measureme	nt stations and	he Niño-3
ndex. "Obs" are observed values	from CDIAC Web site, "model"	is results from HadCM3LC, an	d "Bacastow"	represents data	presented
by Bacastow et al. (1980).					

		Correlation coefficient				Lag (months	i)
Station	Latitude	Obs	Model	Bacastow	Obs	Model	Bacastow
Point Barrow	71°N	0.40	0.29		8	6–8	
Ocean Station P	50°N		0.37	0.66		6-7	7
Mauna Loa	19°N	0.52	0.35	0.52	3	4	3
Fanning Island	4°N		0.50	0.80		4	1
South Pole	90°S	0.50	0.42	0.69	4	4-5	6

Key messages

OCO-2, with its unprecedented coverage over the tropical Pacific Ocean, provides a first-hand look at the space-time evolution of atmospheric CO₂ concentrations during the 2015-2016 El Niño

□ Oceans do contribute to the ENSO CO₂ effect

- suppressed outgassing from the oceans happen early, followed by a larger (and lagged) response from the terrestrial component
- Net impact on the global carbon cycle is an increase in atmospheric CO₂ concentrations
 - would be even larger if it weren't for the reduction in CO₂ outgassing

Acknowledgements

GOSAT Project, ACOS and OCO-2 teams, National Data Buoy Center, Scripps and NOAA data

C. O'Dell (CSU), P. Wennberg (Caltech), K. Trenberth (NCAR), G. McKinley (LDEO/Columbia Univ.), H. Worden (NCAR), P. Patra (JAMSTEC), J. Miller (NOAA), D. Morton (GSFC), C. Cosca (PMEL), Y. -K. Lim (GMAO), R. Kovach (GMAO), among others

References

Bacastow [1976], *Nature* 261, pp. 116-118 Cox et al. [2013], *Nature* 494, pp. 341-344 Feely et al. [1999], *Nature* 398, pp. 597-601 Keeling et al. [1985], *Nature* 375, pp. 666-670 Newell and Weare [1977], *GRL* 4, pp. 1-2 Sutton et al. [2014], *GBC* 28, pp. 131-145 Bacastow [1980], *Science* 210, pp. 66-68 Chatterjee et al. [2017], *Science* 358, 6360 Ishii et al. [2014], *Biogeosciences* 11, pp. 709-734 Jones et al. [2001], *J. Climate* 14, pp. 4113-41 Rayner et al. [1999], *GRL* 26, pp. 493-496 Wenzel et al. [2016], *Nature* 538, pp. 499-501

QUESTIONS?

abhishek.chatterjee@nasa.gov

