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Focus of this talk

Q OCO-2 provides a first-hand look at the space-time evolution of tropical
atmospheric CO, concentrations in response to the 2015-2016 El Nino

Q The tropical Pacific Ocean plays an early and important role in modulating the
changes in atmospheric CO, concentrations during El Nifio events

0 Net impact of El Nifio on the global carbon cycle is an increase in
atmospheric CO, concentrations
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The ENSO - CO, story ...

10 T ENSO events

0 Correlations between atmospheric CO, growth rate and
ENSO activity have been reported since the 1970s

Uptake by ocean &

Bacastow [1976], [1980]; Newell and Weare [1977]; Keeling et al. [1985] temasirial biasphiera

O Studying the response of CO, to ENSO = how
feedbacks between the physical climate system and
global carbon cycle operates

Accumulation rate
in atmosphere
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Does OCO-2 observations . :
provide insight into the A

relationship between ENSO
and the carbon cycle?
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Observable trends in 2015-2016
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Dijkstra [20

0 Normal conditions: upwelling of cold subsurface waters that have high potential pCO,
+ inefficient biological pump =2 strong CO, outgassing

0 El Nino conditions: deepening of thermocline, reduction in upwelling, weakening of
trade winds + more efficient biological pump =2 decreases CO, outgassing by 40-60%
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Ishii et al. [2014]

LDEO V2009

O Estimate of trop. Pacific flux: 0.4 - 0.6 PgC yr!
O Area of trop. Pacific — Ishii definition (~66 million km?), Nifio 3.4 (~6 million km?)
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Gradients in the ocean response

a 2015-2016
event was a
“hybrid”
CP/EP El
Nino
warm pool did
not get all the
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onset phase of peak phase of end of
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warmer and drier climate — overall Positive peak in Xcos

anomaly ... but it leads
the fire signal by 1-2
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High CO emissions during
Indonesia/SE Asian peat

/ fires in Sep-Oct 2015

CO column anomalies (107 mol/cm?)

SE Asia/lndonesian
, fires reached their
A peak in Sep-Oct 2015
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Response of the terrestrial carbon cycle

@» O0CO-2 data of CO, S
@» Model data estimates using 0CO-2 4
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Putting 1t all together...

ENSO indicators
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0 Onset Phase of ENSO: Spring-Summer 2015

= reduction in CO, outgassing over the tropical Pacific

5.
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larger lagged
terrestrial
response

— negative CO, anomalies throughout but with

Xcop anomalies (ppm)

perceptible west-east gradients

large reduction in
CO; outgassing

O Mature Phase of ENSO: Fall 2015 onwards

= increase in CO, anomalies registered over the
tropical Pacific —combination of reduced biospheric
activity and increase in fire activity
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Chatterjee et al. [2017], Science
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Ocean vs. Land contribution during ENSO

GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO.4, PAGES 493-496, FEBRUARY 15, 1999 molecules ‘“”Ye at the surface, only a fraction of them stick or
adsorb onto it*?. _Con_]p{red v_vlth non- templa?e prot_ems_ a tem- Inﬂuence of EI Niﬁo on the

plate protein entering its imprint will have a higher likelihood of

being retained as a result of interlocking within a pit and subse- equatorial Paciﬁc

quently binding strongly to it. In addition, adsorbed protein on a

The relationship between tropical CO; fluxes and the low-adsorptivity surface can exchange with dissolved protein in -~ g gntribution to atmospheric
_ solution®**. Non-template protein that does not fit into a pit is more
El Nino-Southern Oscillation readily displaced than template pmteinzf’, because the pit occupied by coz accumulatlon
the template protein is no longer accessible to solution-phase protein.
Peter J. Raynerl and Rachel M. Law The hydrophilic, crosslinked sugars on protein imprints, in contrast  Richard A. Feely*, Rik Wanninkhof, Taro Takahashii
: to hydrophobic surfaces, allow for a lower protein-sticking probability & Pieter Tans$
CRC for Southern Hemisphere Meteorology, Monash University, Clayton, Australia and a higher protein exchangeability. Both of these processes lead to

* Pacific Marine Environmental Laboratory, NOAA, 7600 Sand Point Way NE,
Seattle, Washington 98115-0070, USA
+ Atlantic Oceanographic and Meteorological Laboratory, NOAA,

1413 3 149 5 4301 Rickenbacker C way, Miami, Florida 33149, USA
transition (from negative to positive) being matched to the Reivd 30l 198 e 25 by 199 B s
. « ey 1. Vijay i, M. A. ific ligand affinity y. Trends Biotechnol. 7, 7176 Now, York 10964, USA
end Of the ENS O event * It seems llkely that the lnlt lal re X S;;m M. P. & Abuknesha, R. A. Biochemical aspects of biosensors. Biosers Bioclect. 9, 373400 (1994). S Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder,
sponse of tropical CO2 fluxes to ENSO occurs in the ocean

and the response is later offset then reversed by terrestrial

‘recognition of the fittest’ through dynamic adsorption—exchange,
UAIITU StUutly Ul VLT ULIIT OTIITD SIIUW LIS ID LAUdTU Uy a IIUA which we believe is essential for protein recognition.

Ratner, B. D. The engineering of biomaterials exhibiting recognition and specificity. J. Mol. Recogn. 9, Colorado 80303, USA
(1996).
. New ideas in biomaterials science—a path to engineered biomaterials. J. Biomed. Mat.

850 (1993). The equatorial oceans are the dominant oceanic source of CO, to
. Brash, J. L. in Interfacial and Applic s ACS Advances in Chemistry  the at P here, " “'5 to a net flux of 0.7-1.5 Pg
(10" g) of carbon, up to 72% of which emanates from the

-

I‘esp onses. OF CLIMATE I NovEMBER 2001 equatorial Pacific Ocean'~. Limited observations indicate that
the size of the equatorial Pacific source is significantly influenced
by El Nifio events*", but the effect has not been well quantified.

: H . Here we report spring and autumn multiannual measurements of
ACknOWledgment S. Th]S st Udy was Ca'rrled out Wlth the the partial pressure of CO, in the surface ocean and atmosphere in
supp ort of t he Aust rahan Government through its Cooperatlve the equatorial Pacific region. During the 1991-94 El Nino period,

The Carbon Cycle Response to ENSO: A Coupled Climate-Carbon Cycle Model Study tan Magazines Ltd 597
CHRIS D. JONES, MATTHEW COLLINS, PETER M. COX, AND STEVEN A. SPALL Fee/y et a/. [1 999]

Hadley Centre, Met Office, Bracknell, Berkshire, United Kingdom
(Manuscript received 30 October 2000, in final form 24 April 2001)

ABSTRACT

There is significant interannual variability in the atmospheric concentration of carbon dioxide (CO,) even Jones et al [200 ]

whcn the effect of mlhmpu%nu sources has been accounted for. This variability is well correlated with the El

Nifio_ hern Oscillation O his behavior of the natural carbon cvcle provides a valuable mech-
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Q “far-away” surface
sites observe with
a 3-6 month lag
A\ 0 ocean signal gets
T diluted by the land

SAM
60°E 90°E 120°E 150°E.€180° 150°W 120°W 90°W 60°W 30°W ° ° ) .
s1gna1
-21-18-15-12-9 -6 -3 0 3 6 9 12 15 18 21

Time (months) O OCO-2 observes

Correlation

TABLE 1. Correlation coefficient: ags between atmospheric CO, concentration i flask m ement stations and the Nifio-3] d. ly h
i Obs” ar ved values CDIAC Web site, “model” is results from Ha and “B /”” represents data presented| lreCt Over t e
Jones et al. [2001] & : £ :
0 tion coefficient reglon O actlon

Model Bacastow
CO, lags with Nifio-3
SST

Fanning Island
South Pole
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Key messages

0 OCO-2, with its unprecedented coverage over the tropical Pacific Ocean,
provides a first-hand look at the space-time evolution of atmospheric CO,
concentrations during the 2015-2016 El Nifio

Q Oceans do contribute to the ENSO CO, effect

= suppressed outgassing from the oceans happen early, followed by a larger (and
lagged) response from the terrestrial component

0 Net impact on the global carbon cycle 1s an increase 1n atmospheric CO,

concentrations
= would be even larger if it weren’t for the reduction in CO, outgassing
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