21 research outputs found

    Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing

    Get PDF
    We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). Here, we estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg2 of the Southern sky. We then use this lensing signal as a proxy for the mean cluster mass of the DES sample. The thermal Sunyaev-Zel'dovich (tSZ) signal, which can contaminate the lensing signal if not addressed, is isolated and removed from the data before obtaining the mass measurement. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we detect the CMB lensing signal at a significance of 12.4σ, 10.5σ and 10.2σ and find the mean cluster masses to be M 200m = 1.66±0.13 [stat.]± 0.03 [sys.], 1.97±0.18 [stat.]± 0.05 [sys.], and 2.11±0.20 [stat.]± 0.05 [sys.]×1014 M⊙, respectively. This is a factor of ∼ 2 improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant discrepancies with optical weak-lensing calibrated masses in these bins. We forecast a 5.7% constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional ∼ 1400 deg2 of observations from the 'Extended' SPT-3G survey

    A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set

    Get PDF
    We present a sample-variance-limited measurement of the temperature power spectrum (TTTT) of the cosmic microwave background (CMB) using observations of a  ⁣1500deg2\sim\! 1500 \,\mathrm{deg}^2 field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range 750<3000750 \leq \ell < 3000. We combine this TTTT measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 TT/TE/EETT/TE/EE data set. This is the first analysis to present cosmological constraints from SPT TTTT, TETE, and EEEE power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for Λ\LambdaCDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra ALA_\mathrm{L}, the effective number of neutrino species NeffN_{\mathrm{eff}}, the primordial helium abundance YPY_{\mathrm{P}}, and the baryon clumping factor due to primordial magnetic fields bb. We find that the SPT-3G 2018 T/TE/EET/TE/EE data are well fit by Λ\LambdaCDM with a probability-to-exceed of 15%15\%. For Λ\LambdaCDM, we constrain the expansion rate today to H0=68.3±1.5kms1Mpc1H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} and the combined structure growth parameter to S8=0.797±0.042S_8 = 0.797 \pm 0.042. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within <1σ<1\,\sigma of each other. (abridged

    Searching for axion-like time-dependent cosmic birefringence with SPT-3G

    No full text
    Ultralight axion-like particles (ALPs) are compelling dark matter candidates because of their potential to resolve small-scale discrepancies between Λ\LambdaCDM predictions and cosmological observations. Axion-photon coupling induces a polarization rotation in linearly polarized photons traveling through an ALP field; thus, as the local ALP dark matter field oscillates in time, distant static polarized sources will appear to oscillate with a frequency proportional to the ALP mass. We use observations of the cosmic microwave background from SPT-3G, the current receiver on the South Pole Telescope, to set upper limits on the value of the axion-photon coupling constant gϕγg_{\phi\gamma} over the approximate mass range 1022101910^{-22} - 10^{-19} eV, corresponding to oscillation periods from 12 hours to 100 days. For periods between 1 and 100 days (4.7×1022 eVmϕ4.7×1020 eV4.7 \times 10^{-22} \text{ eV} \leq m_\phi \leq 4.7 \times 10^{-20} \text{ eV}), where the limit is approximately constant, we set a median 95% C.L. upper limit on the amplitude of on-sky polarization rotation of 0.071 deg. Assuming that dark matter comprises a single ALP species with a local dark matter density of 0.3 GeV/cm30.3 \text{ GeV/cm}^3, this corresponds to gϕγ<1.18×1012 GeV1×(mϕ1.0×1021 eV)g_{\phi\gamma} < 1.18 \times 10^{-12}\text{ GeV}^{-1} \times \left( \frac{m_{\phi}}{1.0 \times 10^{-21} \text{ eV}} \right). These new limits represent an improvement over the previous strongest limits set using the same effect by a factor of ~3.8

    Particle physics with the cosmic microwave background with SPT-3G

    No full text
    The cosmic microwave background (CMB) encodes information about the content and evolution of the universe. The presence of light, weakly interacting particles impacts the expansion history of the early universe, which alters the temperature and polarization anisotropies of the CMB. In this way, current measurements of the CMB place interesting constraints on the neutrino energy density and mass, as well as on the abundance of other possible light relativistic particle species. We present the status of an on-going 1500 sq. deg. survey with the SPT-3G receiver, a new mm-wavelength camera on the 10-m diameter South Pole Telescope (SPT). The SPT-3G camera consists of 16,000 superconducting transition edge sensors, a 10x increase over the previous generation camera, which allows it to map the CMB with an unprecedented combination of sensitivity and angular resolution. We highlight projected constraints on the abundance of sterile neutrinos and the sum of the neutrino masses for the SPT-3G survey, which could help determine the neutrino mass hierarchy...

    First Constraints on the Epoch of Reionization Using the non-Gaussianity of the Kinematic Sunyaev-Zel'dovich Effect from the South Pole Telescope and {\it Herschel}-SPIRE Observations

    No full text
    International audienceWe report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel'dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and {\it Herschel}-SPIRE experiments over a 100 deg2{\rm deg}^{2} field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 μKarcmin\mu {\rm K-arcmin} in bands centered at 95, 150, and 220 GHz. For SPIRE, we include data from the 600 and 857 GHz bands. We reconstruct the velocity-induced large-scale correlation of the small-scale kSZ signal with a quadratic estimator that uses two cosmic microwave background (CMB) temperature maps, constructed by optimally combining data from all the frequency bands. We reject the null hypothesis of a zero trispectrum at 10.3σ10.3\sigma level. However, the measured trispectrum contains contributions from both the kSZ and other undesired components, such as CMB lensing and astrophysical foregrounds, with kSZ being sub-dominant. We use the \textsc{Agora} simulations to estimate the expected signal from CMB lensing and astrophysical foregrounds. After accounting for the contributions from CMB lensing and foreground signals, we do not detect an excess kSZ-only trispectrum and use this non-detection to set constraints on reionization. By applying a prior based on observations of the Gunn-Peterson trough, we obtain an upper limit on the duration of reionization of Δzre,50<4.5\Delta z_{\rm re, 50} < 4.5 (95% C.L). We find these constraints are fairly robust to foregrounds assumptions. This trispectrum measurement is independent of, but consistent with, {\it Planck}'s optical depth measurement. This result is the first constraint on the epoch of reionization using the non-Gaussian nature of the kSZ signal

    Testing the Λ\mathbf{\Lambda}CDM Cosmological Model with Forthcoming Measurements of the Cosmic Microwave Background with SPT-3G

    No full text
    International audienceWe forecast constraints on cosmological parameters enabled by three surveys conducted with SPT-3G, the third-generation camera on the South Pole Telescope. The surveys cover separate regions of 1500, 2650, and 6000 deg2{\rm deg}^{2} to different depths, in total observing 25% of the sky. These regions will be measured to white noise levels of roughly 2.5, 9, and 12 μKarcmin\mu{\rm K-arcmin}, respectively, in CMB temperature units at 150 GHz by the end of 2024. The survey also includes measurements at 95 and 220 GHz, which have noise levels a factor of ~1.2 and 3.5 times higher than 150 GHz, respectively, with each band having a polarization noise level ~2\sqrt{\text{2}} times higher than the temperature noise. We use a novel approach to obtain the covariance matrices for jointly and optimally estimated gravitational lensing potential bandpowers and unlensed CMB temperature and polarization bandpowers. We demonstrate the ability to test the ΛCDM\Lambda{\rm CDM} model via the consistency of cosmological parameters constrained independently from SPT-3G and Planck data, and consider the improvement in constraints on ΛCDM\Lambda{\rm CDM} extension parameters from a joint analysis of SPT-3G and Planck data. The ΛCDM\Lambda{\rm CDM} cosmological parameters are typically constrained with uncertainties up to ~2 times smaller with SPT-3G data, compared to Planck, with the two data sets measuring significantly different angular scales and polarization levels, providing additional tests of the standard cosmological model

    Measurement and Modeling of Polarized Atmosphere at the South Pole with SPT-3G

    No full text
    International audienceWe present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of Austral winter survey data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in Stokes I, Q, and U parameters on large angular scales. Our results are consistent with the polarized signal being produced by the combination of Rayleigh scattering of thermal radiation from the ground and thermal emission from a population of horizontally aligned ice crystals with an anisotropic distribution described by Kolmogorov turbulence. The signal is most significant at large angular scales, high observing frequency, and low elevation angle. Polarized atmospheric emission has the potential to significantly impact observations on the large angular scales being targeted by searches for inflationary B-mode CMB polarization. We present the distribution of measured angular power spectrum amplitudes in Stokes Q and I for 4 years of winter observations, which can be used to simulate the impact of atmospheric polarization and intensity fluctuations at the South Pole on a specified experiment and observation strategy. For the SPT-3G data, downweighting the small fraction of significantly contaminated observations is an effective mitigation strategy. In addition, we present a strategy for further improving sensitivity on large angular scales where maps made in the 220 GHz band are used to measure and subtract the polarized atmosphere signal from the 150 GHz band maps. In observations with the SPT-3G instrument at the South Pole, the polarized atmospheric signal is a well-understood and sub-dominant contribution to the measured noise after implementing the mitigation strategies described here

    Asteroid Measurements at Millimeter Wavelengths with the South Pole Telescope

    No full text
    International audienceAbstract We present the first measurements of asteroids in millimeter wavelength data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two ∼270 deg2 sky regions near the ecliptic plane, each observed with the SPTpol camera ∼100 times over 1 month. We subtract the mean of all maps of a given field, removing static sky signal, and then average the mean-subtracted maps at known asteroid locations. We detect three asteroids—(324) Bamberga, (13) Egeria, and (22) Kalliope—with signal-to-noise ratios (S/N) of 11.2, 10.4, and 6.1, respectively, at 2.0 mm (150 GHz); we also detect (324) Bamberga with an S/N of 4.1 at 3.2 mm (95 GHz). We place constraints on these asteroids’ effective emissivities, brightness temperatures, and light-curve modulation amplitude. Our flux density measurements of (324) Bamberga and (13) Egeria roughly agree with predictions, while our measurements of (22) Kalliope suggest lower flux, corresponding to effective emissivities of 0.64 ± 0.11 at 2.0 and &lt; 0.47 at 3.2 mm. We predict the asteroids detectable in other SPT data sets and find good agreement with detections of (772) Tanete and (1093) Freda in recent data from the SPT-3G camera, which has ∼10× the mapping speed of SPTpol. This work is the first focused analysis of asteroids in data from CMB surveys, and it demonstrates we can repurpose historic and future data sets for asteroid studies. Future SPT measurements can help constrain the distribution of surface properties over a larger asteroid population.</jats:p

    Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing

    Get PDF
    International audienceWe measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). We estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg2^2 of the Southern sky. We then use this signal as a proxy for the mean cluster mass of the DES sample. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we find the mean cluster masses to be M200m=1.66±0.13{M}_{200{\rm{m}}}=1.66\pm0.13 [stat.]±0.03\pm0.03 [sys.], 1.97±0.181.97\pm0.18 [stat.]±0.05\pm0.05 [sys.], and 2.11±0.202.11\pm0.20 [stat.]±0.05\pm0.05 [sys.]×1014 M\times{10}^{14}\ {\rm{M}}_{\odot }, respectively. This is a factor of 2\sim2 improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant tensions with optical weak-lensing calibrated masses in these bins. We forecast a 5.8%5.8\% constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional 1400\sim1400 deg2^2 of observations from the 'Extended' SPT-3G survey
    corecore