104 research outputs found

    Sex-different and growth hormone-regulated expression of microRNA in rat liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are short non-coding RNAs playing an important role in post-transcriptional regulation of gene expression. We have previously shown that hepatic transcript profiles are different between males and females; that some of these differences are under the regulation of growth hormone (GH); and that mild starvation diminishes some of the differences. In this study, we tested if hepatic miRNAs are regulated in a similar manner.</p> <p>Results</p> <p>Using microarrays, miRNA screening was performed to identify sex-dependent miRNAs in rat liver. Out of 324 unique probes on the array, 254 were expressed in the liver and eight (3% of 254) of those were found to be different between the sexes. Among the eight putative sex-different miRNAs, only one female-predominant miRNA (miR-29b) was confirmed using quantitative real-time PCR. Furthermore, 1 week of continuous GH-treatment in male rats reduced the levels of miR-451 and miR-29b, whereas mild starvation (12 hours) raised the levels of miR-451, miR-122a and miR-29b in both sexes. The biggest effects were obtained on miR-29b with GH-treatment.</p> <p>Conclusion</p> <p>We conclude that hepatic miRNA levels depend on the hormonal and nutritional status of the animal and show that miR-29b is a female-predominant and GH-regulated miRNA in rat liver.</p

    Thrombotic Occlusion of All Left Coronary Branches in a Young Woman with Severe Ulcerative Colitis

    Get PDF
    Background. The thrombosis risk is increased in active ulcerative colitis. The limited number of reported complications have predominantly been cerebrovascular but other vessel territories may also be affected. Patient. During a severe attack of ulcerative colitis a 37-year-old woman suffered occlusion of all left coronary artery branches. Serial angiographies showed progressive recanalisation of the coronary arteries during anticoagulation, but no atherosclerotic stenosis. The cause of infarction was thus considered to be an extensive coronary thrombosis. However, a large battery of blood tests failed to identify any procoagulant abnormality. Conclusion. Evidence is now accumulating that the increased thrombosis risk also may involve the coronary arteries, even in young patients. To the best of our knowledge this is the third reported case of myocardial infarction despite angiographically normal coronary arteries in a patient with active ulcerative colitis. The extent of affected myocardium was in this case exceptionally large

    Sex-different hepaticglycogen content and glucose output in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes involved in hepatic metabolism have a sex-different expression in rodents. To test whether male and female rat livers differ regarding lipid and carbohydrate metabolism, whole-genome transcript profiles were generated and these were complemented by measurements of hepatic lipid and glycogen content, fatty acid (FA) oxidation rates and hepatic glucose output (HGO). The latter was determined in perfusates from <it>in situ </it>perfusion of male and female rat livers. These perfusates were also analysed using nuclear magnetic resonance (NMR) spectroscopy to identify putative sex-differences in other liver-derived metabolites. Effects of insulin were monitored by analysis of Akt-phosphorylation, gene expression and HGO after s.c. insulin injections.</p> <p>Results</p> <p>Out of approximately 3 500 gene products being detected in liver, 11% were significantly higher in females, and 11% were higher in males. Many transcripts for the production of triglycerides (TG), cholesterol and VLDL particles were female-predominant, whereas genes for FA oxidation, gluconeogenesis and glycogen synthesis were male-predominant. Sex-differences in mRNA levels related to metabolism were more pronounced during mild starvation (12 h fasting), as compared to the postabsorptive state (4 h fasting). No sex-differences were observed regarding hepatic TG content, FA oxidation rates or blood levels of ketone bodies or glucose. However, males had higher hepatic glycogen content and higher HGO, as well as higher ratios of insulin to glucagon levels. Based on NMR spectroscopy, liver-derived lactate was also higher in males. HGO was inhibited by insulin in parallel with increased phosphorylation of Akt, without any sex-differences in insulin sensitivity. However, the degree of Thr172-phosphorylated AMP kinase (AMPK) was higher in females, indicating a higher degree of AMPK-dependent actions.</p> <p>Conclusions</p> <p>Taken together, males had higher ratios of insulin to glucagon levels, higher levels of glycogen, lower degree of AMPK phosphorylation, higher expression of gluconeogenic genes and higher hepatic glucose output. Possibly these sex-differences reflect a higher ability for the healthy male rat liver to respond to increased energy demands.</p
    • 

    corecore