6,275 research outputs found

    The Judicial Expansion of American Exceptionalism

    Get PDF
    The percolation theory is established as a useful tool in the field of pharmaceutical materials science.It is shown that percolation theory, developed for analyzing insulator–conductor transitions, can beapplied to describe imperfect dc conduction in pharmaceutical microcrystalline cellulose duringdensification. The system, in fact, exactly reproduces the values of the percolation threshold andexponent estimated for a three-dimensional random continuum. Our data clearly show a crossoverfrom a power-law percolation theory region to a linear effective medium theory region at a celluloseporosity of ;0.7

    Mapping multiplicative to additive noise

    Full text link
    The Langevin formulation of a number of well-known stochastic processes involves multiplicative noise. In this work we present a systematic mapping of a process with multiplicative noise to a related process with additive noise, which may often be easier to analyse. The mapping is easily understood in the example of the branching process. In a second example we study the random neighbour (or infinite range) contact process which is mapped to an Ornstein-Uhlenbeck process with absorbing wall. The present work might shed some light on absorbing state phase transitions in general, such as the role of conditional expectation values and finite size scaling, and elucidate the meaning of the noise amplitude. While we focus on the physical interpretation of the mapping, we also provide a mathematical derivation.Comment: 22 pages, 4 figures, IOP styl

    Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed---either explicitly or implicitly---to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis

    Piercing the Veil: William J. Brennan\u27s Account of Regents of the University of California v. Bakke

    Get PDF
    Porous nickel oxide films were deposited onto unheated indium tin oxide coated glass substrates by reactive dc magnetron sputtering. These films had a cubic NiO structure. Electrochromic properties were evaluated in 1 M potassium hydroxide (KOH) and in 1 M lithium perchlorate in propylene carbonate (Li-PC). Large optical modulation was obtained for similar to 500-nm-thick films both in KOH and in Li-PC (similar to 70% and similar to 50% at 550 nm, respectively). In KOH, tensile and compressive stresses, due to the expansion and contraction of the lattice, were found for films in their bleached and colored state, respectively. In Li-PC, compressive stress was seen both in colored and bleached films. Durability tests with voltage sweeps between -0.5 and 0.65 V vs Ag/AgCl in KOH showed good durability for 10,000 cycles, whereas voltage sweeps between 2.0 and 4.7 V vs Li/Li+ in Li-PC yielded significant degradation after 1000 cycles.EU GRINDOO

    Borel Degenerations of Arithmetically Cohen-Macaulay curves in P^3

    Full text link
    We investigate Borel ideals on the Hilbert scheme components of arithmetically Cohen-Macaulay (ACM) codimension two schemes in P^n. We give a basic necessary criterion for a Borel ideal to be on such a component. Then considering ACM curves in P^3 on a quadric we compute in several examples all the Borel ideals on their Hilbert scheme component. Based on this we conjecture which Borel ideals are on such a component, and for a range of Borel ideals we prove that they are on the component.Comment: 20 pages, shorter and more effective versio

    Much Ado About Time: Exhaustive Annotation of Temporal Data

    Full text link
    Large-scale annotated datasets allow AI systems to learn from and build upon the knowledge of the crowd. Many crowdsourcing techniques have been developed for collecting image annotations. These techniques often implicitly rely on the fact that a new input image takes a negligible amount of time to perceive. In contrast, we investigate and determine the most cost-effective way of obtaining high-quality multi-label annotations for temporal data such as videos. Watching even a short 30-second video clip requires a significant time investment from a crowd worker; thus, requesting multiple annotations following a single viewing is an important cost-saving strategy. But how many questions should we ask per video? We conclude that the optimal strategy is to ask as many questions as possible in a HIT (up to 52 binary questions after watching a 30-second video clip in our experiments). We demonstrate that while workers may not correctly answer all questions, the cost-benefit analysis nevertheless favors consensus from multiple such cheap-yet-imperfect iterations over more complex alternatives. When compared with a one-question-per-video baseline, our method is able to achieve a 10% improvement in recall 76.7% ours versus 66.7% baseline) at comparable precision (83.8% ours versus 83.0% baseline) in about half the annotation time (3.8 minutes ours compared to 7.1 minutes baseline). We demonstrate the effectiveness of our method by collecting multi-label annotations of 157 human activities on 1,815 videos.Comment: HCOMP 2016 Camera Read

    Law School Libraries 2007

    Get PDF
    The primary mission of the law school library is to meet the information needs of the faculty and students of the institution it supports. In addition to their role in educating future lawyers, law schools are the major producers of scholarly literature in law and rely on academic law libraries to provide the resources and support needed for research and publication. Beyond support for the core functions of legal education and research, the specific missions of law school libraries vary depending on the size and missions of law schools of different types. Differences among law schools result in differences among their libraries in collection size and composition, staffing and services offered, and additional clienteles served
    corecore