2,547 research outputs found

    Exact vortex nucleation and cooperative vortex tunneling in dilute BECs

    Full text link
    With the imminent advent of mesoscopic rotating BECs in the lowest Landau level (LLL) regime, we explore LLL vortex nucleation. An exact many-body analysis is presented in a weakly elliptical trap for up to 400 particles. Striking non-mean field features are exposed at filling factors >>1 . Eg near the critical rotation frequency pairs of energy levels approach each other with exponential accuracy. A physical interpretation is provided by requantising a mean field theory, where 1/N plays the role of Planck's constant, revealing two vortices cooperatively tunneling between classically degenerate energy minima. The tunnel splitting variation is described in terms of frequency, particle number and ellipticity.Comment: 4 pages,4 figure

    Deep ROSAT Surveys & the contribution of AGNs to the soft X-ray background

    Get PDF
    The ROSAT Deep Surveys in the Lockman Hole have revealed that AGNs are the main contributors (~75%) to the soft X-ray background in the 1–2 keV band. Using new optical/infrared and radio observations we have obtained a nearly complete identification (93%) of the 91 X-ray sources down to a limiting flux of 1.2·10^(–15) erg cm^(–2) s^(–1) in the 0.5–2.0 keV band. We present the optical colors and the emission line properties of our AGNs in comparison with other X-ray selected AGN samples. Furthermore we discuss the fraction of red AGNs found in the ROSAT Deep Surveys. From the ROSAT Deep Surveys we see no evidence for a new class of X-ray bright galaxies, which significantly contributes to the soft X-ray background

    The velocity peaks in the cold dark matter spectrum on Earth

    Full text link
    The cold dark matter spectrum on earth is expected to have peaks in velocity space. We obtain estimates for the sizes and locations of these peaks. To this end we have generalized the secondary infall model of galactic halo formation to include angular momentum of the dark matter particles. This new model is still spherically symmetric and it has self-similar solutions. Our results are relevant to direct dark matter search experiments.Comment: 12 pages including 1 table and 4 figures, LaTeX, REVTEX 3.0 versio

    Large-amplitude isothermal fluctuations and high-density dark-matter clumps

    Full text link
    Large-amplitude isothermal fluctuations in the dark matter energy density, parameterized by \Phi\equiv\delta\rhodm/\rhodm, are studied within the framework of a spherical collapse model. For \Phi \ga 1, a fluctuation collapses in the radiation-dominated epoch and produces a dense dark-matter object. The final density of the virialized object is found to be \rho_F \approx 140\, \Phi^3 (\Phi+1) \rhoeq, where \rhoeq is the matter density at equal matter and radiation energy density. This expression is valid for the entire range of possible values of Φ\Phi, both for Φ1\Phi \gg 1 and Φ1\Phi \ll 1. Some astrophysical consequences of high-density dark-matter clumps are discussed.Comment: 15 pages plus 3 figures (included at the end as a uuencoded postscript file), LaTeX, FNAL--PUB--94/055--

    Oblique ion collection in the drift-approximation: how magnetized Mach-probes really work

    Get PDF
    The anisotropic fluid equations governing a frictionless obliquely-flowing plasma around an essentially arbitrarily shaped three-dimensional ion-absorbing object in a strong magnetic field are solved analytically in the quasi-neutral drift-approximation, neglecting parallel temperature gradients. The effects of transverse displacements traversing the magnetic presheath are also quantified. It is shown that the parallel collection flux density dependence upon external Mach-number is ncsexp[1(MMcotθ)]n_\infty c_s \exp[-1 -(M_{\parallel\infty}- M_\perp\cot\theta)] where θ\theta is the angle (in the plane of field and drift velocity) of the object-surface to the magnetic-field and MM_{\parallel\infty} is the external parallel flow. The perpendicular drift, \M_\perp, appearing here consists of the external \E\wedge\B drift plus a weighted sum of the ion and electron electron diamagnetic drifts that depends upon the total angle of the surface to the magnetic field. It is that somewhat counter-intuitive combination that an oblique (transverse) Mach probe experiment measures.Comment: Revised version following refereeing for Physics of Plasma

    Cosmological models from quintessence

    Get PDF
    A generalized quintessence model is presented which corresponds to a richer vacuum structure that, besides a time-dependent, slowly varying scalar field, contains a varying cosmological term. From first principles we determine a number of scalar-field potentials that satisfy the constraints imposed by the field equations and conservations laws, both in the conventional and generalized quintessence models. Besides inverse-power law solutions, these potentials are given in terms of hyperbolic functions or the twelve Jacobian elliptic functions, and are all related to the luminosity distance by means of an integral equation. Integration of this equation for the different solutions leads to a large family of cosmological models characterized by luminosity distance-redshift relations. Out of such models, only four appear to be able to predict a required accelerating universe conforming to observations on supernova Ia, at large or moderate redshifts.Comment: 9 pages, RevTex, to appear in Phys. Rev.

    The Evolutionary Status of Clusters of Galaxies at z ~ 1

    Full text link
    Combined HST, X-ray, and ground-based optical studies show that clusters of galaxies are largely "in place" by z1z \sim 1, an epoch when the Universe was less than half its present age. High resolution images show that elliptical, S0, and spiral galaxies are present in clusters at redshifts up to z1.3z \sim 1.3. Analysis of the CMDs suggest that the cluster ellipticals formed their stars several Gyr earlier, near redshift 3. The morphology--density relation is well established at z1z\sim1, with star-forming spirals and irregulars residing mostly in the outer parts of the clusters and E/S0s concentrated in dense clumps. The intracluster medium has already reached the metallicity of present-day clusters. The distributions of the hot gas and early-type galaxies are similar in z1z\sim1 clusters, indicating both have largely virialized in the deepest potentials wells. In spite of the many similarities between z1z\sim1 and present-day clusters, there are significant differences. The morphologies revealed by the hot gas, and particularly the early-type galaxies, are elongated rather than spherical. We appear to be observing the clusters at an epoch when the sub-clusters and groups are still assembling into a single regular cluster. Support for this picture comes from CL0152 where the gas appears to be lagging behind the luminous and dark mass in two merging sub-components. Moreover, the luminosity difference between the first and second brightest cluster galaxies at z1z\sim1 is smaller than in 93% of present-day Abell clusters, which suggests that considerable luminosity evolution through merging has occurred since that epoch. Evolution is also seen in the bolometric X-ray luminosity function.Comment: 18 pages, 12 figures, to appear in Penetrating Bars through Masks of Cosmic Dust: the Hubble Tuing Fork Strikes a New Note, eds. D.L. Block, K.C. Freeman, I. Puerari & R. Groess. Figures degraded to meet astroph size limit; a version with higher resolution figures may be downloaded from: http://acs.pha.jhu.edu/~jpb/z1clusters/ford_clusters.pd

    Formation of convective cells in the scrape-off layer of the CASTOR tokamak

    Get PDF
    Understanding of the scrape-off layer (SOL) physics in tokamaks requires diagnostics with sufficient temporal and spatial resolution. This contribution describes results of experiments performed in the SOL of the CASTOR tokamak (R=40 cm, a = 6 cm) by means of a ring of 124 Langmuir probes surrounding the whole poloidal cross section. The individual probes measure either the ion saturation current of the floating potential with the spatial resolution up to 3 mm. Experiments are performed in a particular magnetic configuration, characterized by a long parallel connection length in the SOL, L_par ~q2piR. We report on measurements in discharges, where the edge electric field is modified by inserting a biased electrode into the edge plasma. In particular, a complex picture is observed, if the biased electrode is located inside the SOL. The poloidal distribution of the floating potential appears to be strongly non-uniform at biasing. The peaks of potential are observed at particular poloidal angles. This is interpreted as formation of a biased flux tube, which emanates from the electrode along the magnetic field lines and snakes q times around the torus. The resulting electric field in the SOL is 2-dimensional, having the radial as well as the poloidal component. It is demonstrated that the poloidal electric field E_pol convects the edge plasma radially due to the E_pol x B_T drift either inward or outward depending on its sign. The convective particle flux is by two orders of magnitude larger than the fluctuation-induced one and consequently dominates.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France
    corecore