266 research outputs found
Systems approaches to animal disease surveillance and resource allocation: methodological frameworks for behavioral analysis
While demands for animal disease surveillance systems are growing, there has been little applied research that has examined the interactions between resource allocation, cost-effectiveness, and behavioral considerations of actors throughout the livestock supply chain in a surveillance system context. These interactions are important as feedbacks between surveillance decisions and disease evolution may be modulated by their contextual drivers, influencing the cost-effectiveness of a given surveillance system. This paper identifies a number of key behavioral aspects involved in animal health surveillance systems and reviews some novel methodologies for their analysis. A generic framework for analysis is discussed, with exemplar results provided to demonstrate the utility of such an approach in guiding better disease control and surveillance decisions
Synthesis, characterisation, and utilisation of copper nanoflower for biocementation for ground improvement applications
Microbially-induced calcium carbonate precipitation (MICP) has recently emerged as a sustainable ground improvement method. Nevertheless, the technique’s applicability in soils with narrow pore throats has been queried. To overcome these challenges, the use of enzymes (including bacterially produced enzymes) was proposed for these soils. However, the use of free enzymes entails many challenges linked predominantly to the limited enzyme supply, the poor stability of the enzyme once released into the soil, and the poor reusability of the enzyme. This paper studies the use of nano enzymes with a high biocementation efficacy for carbonic anhydrase (CA) enzyme delivery as one possible way to overcome potentially these challenges. CA enzyme was used because it has the potential to be an environmentally sustainable biocementation pathway due to its ability to sequester CO2 for biocement production. The paper presents the synthesis, characterisation, and utilisation of CA-enwrapped copper phosphate-based inorganic hybrid nanoflowers for innovative delivery and enzyme stabilisation due to the enhanced thermal and enzyme activity efficiency and due to their reusability, if recovered at the end of the treatment. The results from this study show that the bovine carbonic anhydrase enzyme enhanced the CO2 hydration reaction, resulting in a bioprecipitation reaction and the production of calcium carbonate and increased strength of treated soil with 500kPa for free CA and approximately 1000kPa for the hybrid CA-Cu. The material analysis confirmed calcite as the primary precipitate formed, which would act as a bonding agent between soil particles for ground improvement applications
Fruit and vegetable waste used as bacterial growth media for the biocementation of two geomaterials.
This paper investigates the feasibility of using randomly collected fruit and vegetable (FV) waste as a cheap growing medium of bacteria for biocementation applications. Biocementation has been proposed in the literature as an environmentally-friendly ground improvement method to increase the stability of geomaterials, prevent erosion and encapsulate waste, but currently suffers from the high costs involved, such as bacteria cultivation costs. After analysis of FV waste of varied composition in terms of sugar and protein content, diluted FV waste was used to grow ureolytic (S. pasteurii, and B.licheniformis) and also an autochthonous heterotrophic carbonic anhydase (CA)-producing B.licheniformis strain, whose growth in FV media had not been attempted before. Bacterial growth and enzymatic activity in FV were of appropriate levels, although reduced compared to commercial media. Namely, the CA-producing B.licheniformis had a maximum OD of 1.799 and a CA activity of 0.817Â U/mL in FV media. For the ureolytic pathway, B. licheniformis reached a maximum OD of 0.986 and a maximum urease activity of 0.675Â mM urea/min, and S. pasteurii a maximum OD Â =Â 0.999 and a maximum urease activity of 0.756Â mM urea/min. Biocementation of a clay and locomotive ash, a geomaterial specific to UK railway embankments, using precultured bacteria in FV was then proven, based on recorded unconfined compressive strengths of 1-3Â MPa and calcite content increases of up to 4.02 and 8.62Â % for the clay and ash respectively. Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDS), attested the formation of bioprecipitates with characteristic morphologies and elementary composition of calcite crystals. These findings suggest the potential of employing FV to biocement these problematic geomaterials and are of wider relevance for environmental and geoenvironmental applications involving bioaugmentation. Such applications that require substrates in very large quantities can help tackle the management of the very voluminous fruit and vegetable waste produced worldwide
Biocementation mediated by native Carbonic Anhydrase-producing microbes.
This study investigated the feasibility of biocementing a fine-grained foundation soil from the East Anglia railway network via the carbonic anhydrase (CA) pathway. This pathway is a promising way of improving the mechanical properties of soils by biocementation while sequestering CO2 during the process. To achieve the aim of this research, forty CA-producing bacterial isolates from soil layers below a railway embankment in East Anglia, UK, were screened and selected using a qualitative CA activity assay. Three of these bacteria expressed high and stable CA enzyme activity and were further characterised by their morphological, molecular, and enzyme profile characteristics. Bioaugmentation was then employed to biocement the soil from the site using the native CA-producing bacteria isolated from the soil. The unconfined compressive strength and calcite content of the treated soil were determined. Preliminary results showed a substantial increase in soil unconfined compressive strength upon biocementation treatment. Although further geotechnical testing is the subject of future work, the unconfined compressive strength and calcite content results obtained so far proved biocementation of the fine-grained soil and showed promise that the CA biocementation route can be further developed as a successful and environmentally friendly soil stabilization technique, with the added advantage of sequestering CO2 from the atmosphere or using captured waste CO2, during the biocementation process
Concurrent Carbon Capture and Biocementation through the Carbonic Anhydrase (CA) activity of microorganisms ‑ a review and outlook
Biocementation, i.e., the production of biomimetic cement through the metabolic activity of microorganisms, offers exciting new prospects for various civil and environmental engineering applications. This paper presents a systematic literature review on a biocementation pathway, which uses the carbonic anhydrase (CA) activity of microorganisms that sequester CO2 to produce biocement. The aim is the future development of this technique for civil and (geo-)environmental engineering applications towards CO2-neutral or negative processes. After screening 248 potentially relevant peer-reviewed journal papers published between 2002 and 2023, 38 publications studying CA-biocementation were considered in the review. Some of these studies used pure CA enzyme rather than bacteria-produced CA. Of these studies, 7 used biocementation for self-healing concrete, 6 for CO2 sequestration, 10 for geotechnical applications, and 15 for (geo-)environmental applications. A total of 34 bacterial strains were studied, and optimal conditions for their growth and enzymatic activity were identified. The review concluded that the topic is little researched; more studies are required both in the laboratory and field (particularly long-term field experiments, which are totally lacking). No studies on the numerical modelling of CA-biocementation and the required kinetic parameters were found. The paper thus consulted the more widely researched field of CO2 sequestration using the CA-pathway, to identify other microorganisms recommended for further research and reaction kinetic parameters for numerical modelling. Finally, challenges to be addressed and future research needs were discussed
Towards the Development of Sustainable Ground Improvement Techniques —Biocementation Study of an Organic Soil
Ongoing research effort is dedicated to the development of innovative, superior and cost-effective ground improvement techniques to mitigate natural and man-made hazards while minimising waste and other environmental impacts. In this context, the nature-based process of biocementation of soils has been proposed as a potentially more sustainable technique than conventional chemical ground improvement practices. This paper focuses on the biocementation of an organic soil of the UK railway network. Having
recently proven the feasibility of biocementing this soil using indigenous ureolytic bacteria, in this paper, the authors perform a parametric study to identify treatments successful in increasing the strength of the soil. Selected treatments are then applied to the soil to assess its volume change during consolidation, secondary compression and shrinkage upon drying. The results show that, depending on the treatments used, biocementation has increased the unconfined compressive strength by up to 81% compared to that of the control
samples. For selected treatments and the range of water contents tested (55–33%), shrinkage upon drying reduced by 16%, while the volumetric strains of the soil upon 1-D compression reduced by 32–47%. This was reflected in the values of the coefficient of volume compressibility and the coefficient of secondary compression (the latter either reduced by up to an order of magnitude or secondary compression was not observed altogether in the testing period). Overall, the results proved that biocementation improved
considerably the mechanical properties of the organic soil, which gives promise for addressing the settlement problems of this soil
Innovative methods of ground improvement for railway embankment Peat Fens foundation soil
The aim of this research was to assess the feasibility of biocementing a problematic foundation soil of railway embankments from Peat Fens in East Anglia, UK. Biocementation of soil is an emerging, novel ground improvement technique. It has recently attracted the interest of researchers worldwide because it has been proposed as potentially environmentally superior to chemical grouts and other common soil stabilisers e.g. cement or lime (linked to high CO2 11 emissions). In this study we screened and isolated non-pathogenic indigenous ureolytic microbial candidates with potential for biocementation from samples originating from Peat Fens in East Anglia, UK. Four strains were selected as the most suitable candidates, based on their growth rate and their viability in a wide range of temperatures, pH and soil moisture contents corresponding to typical seasonal field conditions. After a number of Unconfined Compressive Strength (UCS) tests, one strain (Bacillus licheniformis) was selected as the most promising for this soil treatment and used for further study. Two different methods of implementation of the treatments were considered, namely pressure flow soil column and electrokinetic injection. The UCS results supported by CaCO3 measurements as well as microstructural SEM-EDS analysis proved that biocementation did occur for both implementation methods and for a number of treatment combinations. Ongoing work on optimisation of treatments and implementation methods is carried out towards the upscaling of the techniques for in situ implementation which is planned for the next stage of the research
The evolution of galaxy groups and of galaxies therein
Properties of groups of galaxies depend sensitively on the algorithm for
group selection, and even the most recent catalogs of groups built from
redshift-space selection should suffer from projections and infalling galaxies.
The cosmo-dynamical evolution of groups from initial Hubble expansion to
collapse and virialization leads to a fundamental track (FT) in
virial-theorem-M/L vs crossing time. The increased rates of mergers, both
direct and after dynamical friction, in groups relative to clusters, explain
the higher fraction of elliptical galaxies at given local number density in
X-ray selected groups, relative to clusters, even when the hierarchical
evolution of groups is considered. Galaxies falling into groups and clusters
should later travel outwards to typically 2 virial radii, which is somewhat
less than the outermost radius where observed galaxy star formation
efficiencies are enhanced relative to field galaxies of same morphological
type. An ongoing analysis of the internal kinematics of X-ray selected groups
suggests that the radial profiles of line of sight velocity dispersion are
consistent with isotropic NFW distributions for the total mass density, with
higher (lower) concentrations than LambdaCDM predictions in groups of high
(low) mass. The critical mass, at M200 ~ 10^13 M_sun is consistent with
possible breaks in the X-ray luminosity-temperature and Fundamental Plane
relations. The internal kinematics of groups indicate that the M-T relation of
groups should agree with that extrapolated from clusters with no break at the
group scale. The analyses of observed velocity dispersion profiles and of the
FT both suggest that low velocity dispersion groups (compact and loose, X-ray
emitting or undetected) are quite contaminated by chance projections.Comment: Invited review, ESO workshop "Groups of Galaxies in the Nearby
Universe", held in Santiago, Chile, 5-9 December 2005, ed. I. Saviane, V.
Ivanov & J. Borissova, 16 page
- …